Skip to main content

Prescribed Learning of R.E. Classes

  • Conference paper
Algorithmic Learning Theory (ALT 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4754))

Included in the following conference series:

Abstract

This work extends studies of Angluin, Lange and Zeugmann on the dependence of learning on the hypotheses space chosen for the class. In subsequent investigations, uniformly recursively enumerable hypotheses spaces have been considered. In the present work, the following four types of learning are distinguished: class-comprising (where the learner can choose a uniformly recursively enumerable superclass as hypotheses space), class-preserving (where the learner has to choose a uniformly recursively enumerable hypotheses space of the same class), prescribed (where there must be a learner for every uniformly recursively enumerable hypotheses space of the same class) and uniform (like prescribed, but the learner has to be synthesized effectively from an index of the hypothesis space). While for explanatory learning, these four types of learnability coincide, some or all are different for other learning criteria. For example, for conservative learning, all four types are different. Several results are obtained for vacillatory and behaviourally correct learning; three of the four types can be separated, however the relation between prescribed and uniform learning remains open. It is also shown that every (not necessarily uniformly recursively enumerable) behaviourally correct learnable class has a prudent learner, that is, a learner using a hypotheses space such that it learns every set in the hypotheses space. Moreover the prudent learner can be effectively built from any learner for the class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angluin, D.: Inductive inference of formal languages from positive data. Information and Control 45, 117–135 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baliga, G., Case, J., Merkle, W., Stephan, F., Wiehagen, R.: When unlearning helps. Technical Report TRA5/06, School of Computing, National University of Singapore (2005), Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 844–855. Springer, Heidelberg (2000)

    Google Scholar 

  3. Bārzdiņš, J.: Two theorems on the limiting synthesis of functions. In: Theory of Algorithms and Programs– Volume 1, vol. 210, pp. 82–88. Latvian State University, Riga (1974)

    Google Scholar 

  4. Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Information and Control 28, 125–155 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Case, J.: The power of vacillation in language learning. SIAM Journal on Computing 28, 1941–1969 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Case, J., Lynes, C.: Inductive inference and language identification. In: Nielsen, M., Schmidt, E.M. (eds.) Ninth International Colloquium on Automata, Languages and Programming (ICALP). LNCS, vol. 140, pp. 107–115. Springer, Heidelberg (1982)

    Chapter  Google Scholar 

  7. de Jongh, D., Kanazawa, M.: Angluin’s theorem for indexed families of r.e. sets and applications. In: Proceedings of the Ninth Annual Conference on Computational Learning Theory, pp. 193–204. ACM Press, New York (1996)

    Chapter  Google Scholar 

  8. Friedberg, R.: Three theorems on recursive enumeration. Journal of Symbolic Logic 23, 309–316 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fulk, M.: Prudence and other conditions on formal language learning. Information and Computation 85, 1–11 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gold, E.M.: Language identification in the limit. Information and Control 10, 447–474 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems That Learn: An Introduction to Learning Theory. MIT-Press, Boston (1999)

    Google Scholar 

  12. Jain, S., Sharma, A.: Prudence in vacillatory language identification. Mathematical Systems Theory 28, 267–279 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jain, S., Stephan, F.: Learning in Friedberg Numberings. In: Hutter, M., Servedio, R., Takimoto, E. (eds.) Algorithmic Learning Theory: 18th International Conference, ALT 2007, Sendai, Japan (to appear, 2007)

    Google Scholar 

  14. Kurtz, S., Royer, J.S.: Prudence in language learning. In: Proceedings of the First Annual Workshop on Computational Learning Theory, pp. 143–156. MIT, Cambridge (1988)

    Google Scholar 

  15. Lange, S., Zeugmann, T.: Language learning in dependence on the space of hypotheses. In: Proceedings of the Sixth Annual Conference on Computational Learning Theory, Santa Cruz, California, United States, pp. 127–136 (1993)

    Google Scholar 

  16. Lange, S., Zeugmann, T., Kapur, S.: Monotonic and dual monotonic language learning. Theoretical Computer Science 155, 365–410 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications. Springer, Heidelberg (1993)

    Book  MATH  Google Scholar 

  18. Odifreddi, P.: Classical Recursion Theory, North-Holland, Amsterdam (1989)

    Google Scholar 

  19. Osherson, D., Stob, M., Weinstein, S.: Systems That Learn, An Introduction to Learning Theory for Cognitive and Computer Scientists. Bradford — The MIT Press, Cambridge, Massachusetts (1986)

    Google Scholar 

  20. Post, E.: Recursively enumerable sets of positive integers and their decision problems. Bulletin of the American Mathematical Society 50, 284–316 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  21. Soare, R.: Recursively Enumerable Sets and Degrees. Springer, Heidelberg (1987)

    Book  MATH  Google Scholar 

  22. Wiehagen, R.: A thesis in inductive inference. In: Dix, J., Schmitt, P.H., Jantke, K.P. (eds.) Proceedings First International Workshop on Nonmonotonic and Inductive Logic. LNCS, vol. 543, pp. 184–207. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  23. Zeugmann, T.: Algorithmisches Lernen von Funktionen und Sprachen. Habilitationsschrift, Technische Hochschule Darmstadt (1993)

    Google Scholar 

  24. Zeugmann, T., Lange, S.: A guided tour across the boundaries of learning recursive languages. In: Lange, S., Jantke, K.P. (eds.) Algorithmic Learning for Knowledge-Based Systems. LNCS, vol. 961, pp. 193–262. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  25. Zeugmann, T., Lange, S., Kapur, S.: Characterizations of monotonic and dual monotonic language learning. Information and Computation 120, 155–173 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zilles, S.: Separation of uniform learning classes. Theoretical Computer Science 313, 229–265 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zilles, S.: Increasing the power of uniform inductive learners. Journal of Computer and System Sciences 70, 510–538 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jain, S., Stephan, F., Ye, N. (2007). Prescribed Learning of R.E. Classes. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds) Algorithmic Learning Theory. ALT 2007. Lecture Notes in Computer Science(), vol 4754. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75225-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75225-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75224-0

  • Online ISBN: 978-3-540-75225-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics