Skip to main content

Humanized Immune System (HIS) Mice as a Tool to Study Human NK Cell Development

  • Chapter
Humanized Mice

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 324))

The study of human hematopoiesis is conditioned by access to nondiseased human tissue samples that harbor the cellular substrates for this developmental process. Technical and ethical concerns limit the availability to tissues derived from the fetal and newborn periods, while adult samples are generally restricted to peripheral blood. Access to a small animal model that faithfully recapitulates the process of human hematopoiesis would provide an important tool. Natural killer (NK) cells comprise between 10% and 15% of human peripheral blood lymphocytes and appear conserved in several species. NK cells are implicated in the recognition of pathogen-infected cells and in the clearance of certain tumor cells. In this chapter, we discuss NK cell developmental pathways and the use of humanized murine models for the study of human hematopoiesis and, in particular, human NK cell development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anfossi, N., Andre, P., Guia, S., Falk, C. S., Roetynck, S., Stewart, C. A., Breso, V., Frassati, C., Reviron, D., Middleton, D. et al. (2006). Human NK cell education by inhibitory receptors for MHC class I. Immunity25, 331–342.

    Article  PubMed  CAS  Google Scholar 

  • Baenziger, S., Tussiwand, R., Schlaepfer, E., Mazzucchelli, L., Heikenwalder, M., Kurrer, M. O., Behnke, S., Frey, J., Oxenius, A., Joller, H. et al. (2006). Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2−/−γc−/− mice. Proc Natl Acad Sci USA103, 15951–15956.

    Article  PubMed  CAS  Google Scholar 

  • Barton, K., Muthusamy, N., Fischer, C., Ting, C. N., Walunas, T. L., Lanier, L. L., and Leiden, J. M. (1998). The Ets-1 transcription factor is required for the development of natural killer cells in mice. Immunity9, 555–563.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, I. M., Zatsepina, O., Zamai, L., Azzoni, L., Mikheeva, T., and Perussia, B. (1996). Definition of a natural killer NKR−P1A+/CD56−/CD16− functionally immature human NK cell subset that differentiates in vitro in the presence of interleukin 12. J Exp Med184, 1845–1856.

    Article  PubMed  CAS  Google Scholar 

  • Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P., and Salazar-Mather, T. P. (1999). Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol17, 189–220.

    Article  PubMed  CAS  Google Scholar 

  • Bix, M., Liao, N. S., Zijlstra, M., Loring, J., Jaenisch, R., and Raulet, D. (1991). Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice. Nature349, 329–331.

    Article  PubMed  CAS  Google Scholar 

  • Blom, B., and Spits, H. (2006). Development of human lymphoid cells. Annu Rev Immunol24, 287–320.

    Article  PubMed  CAS  Google Scholar 

  • Buckley, R. H. (2004). Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu Rev Immunol22, 625–655.

    Article  PubMed  CAS  Google Scholar 

  • Carson, W. E., Haldar, S., Baiocchi, R. A., Croce, C. M., and Caligiuri, M. A. (1994). The c-kit ligand suppresses apoptosis of human natural killer cells through the upregulation of bcl-2. Proc Natl Acad Sci USA91, 7553–7557.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, M. A., Fehniger, T. A., and Caligiuri, M. A. (2001). The biology of human natural killer-cell subsets. Trends Immunol22, 633–640.

    Article  PubMed  CAS  Google Scholar 

  • De Smedt, M., Hoebeke, I., Reynvoet, K., Leclercq, G., and Plum, J. (2005). Different thresholds of Notch signaling bias human precursor cells toward B-, NK-, monocytic/dendritic-, or T-cell lineage in thymus microenvironment. Blood106, 3498–3506.

    Article  PubMed  CAS  Google Scholar 

  • Diefenbach, A., Jensen, E. R., Jamieson, A. M., and Raulet, D. H. (2001). Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature413, 165–171.

    Article  PubMed  CAS  Google Scholar 

  • Di Santo, J. P. (2006). Natural killer cell developmental pathways: a question of balance. Annu Rev Immunol24, 257–286.

    Article  PubMed  CAS  Google Scholar 

  • Di Santo, J. P., and Vosshenrich, C. A. (2006). Bone marrow versus thymic pathways of natural killer cell development. Immunol Rev214, 35–46.

    Article  PubMed  CAS  Google Scholar 

  • DiSanto, J. P., Muller, W., Guy-Grand, D., Fischer, A., and Rajewsky, K. (1995). Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc Natl Acad Sci USA92, 377–381.

    Article  PubMed  CAS  Google Scholar 

  • Farag, S. S., and Caligiuri, M. A. (2006). Human natural killer cell development and biology. Blood Rev20, 123–137.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez, N. C., Treiner, E., Vance, R. E., Jamieson, A. M., Lemieux, S., and Raulet, D. H. (2005). A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood105, 4416–4423.

    Article  PubMed  CAS  Google Scholar 

  • Freud, A. G., Becknell, B., Roychowdhury, S., Mao, H. C., Ferketich, A. K., Nuovo, G. J., Hughes, T. L., Marburger, T. B., Sung, J., Baiocchi, R. A. et al. (2005). A human CD34+ subset resides in lymph nodes and differentiates into CD56bright natural killer cells. Immunity22, 295–304.

    Article  PubMed  CAS  Google Scholar 

  • Freud, A. G., and Caligiuri, M. A. (2006). Human natural killer cell development. Immunol Rev214, 56–72.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa, H., Yabe, T., Watanabe, K., Miyamoto, R., Miki, A., Akaza, T., Tadokoro, K., Tohma, S., Inoue, T., Yamamoto, K., and Juji, T. (1999). Tolerance of NK and LAK activity for HLA class I-deficient targets in a TAP1-deficient patient (bare lymphocyte syndrome type I). Hum Immunol60, 32–40.

    Article  PubMed  CAS  Google Scholar 

  • Galy, A., Travis, M., Cen, D., and Chen, B. (1995). Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity3, 459–473.

    Article  PubMed  CAS  Google Scholar 

  • Gimeno, R., Weijer, K., Voordouw, A., Uittenbogaart, C. H., Legrand, N., Alves, N. L., Wijnands, E., Blom, B., and Spits, H. (2004). Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2−/− γc−/− mice: functional inactivation of p53 in developing T cells. Blood104, 3886–3893.

    Article  PubMed  CAS  Google Scholar 

  • Gorantla, S., Sneller, H., Walters, L., Sharp, J. G., Pirruccello, S. J., West, J. T., Wood, C., Dewhurst, S., Gendelman, H. E., and Poluektova, L. (2007). HIV-1 pathobiology studied in humanized Balb/c-Rag2−/−γc−/− mice. J Virol81, 2700–2712.

    Article  PubMed  CAS  Google Scholar 

  • Haddad, R., Guardiola, P., Izac, B., Thibault, C., Radich, J., Delezoide, A. L., Baillou, C., Lemoine, F. M., Gluckman, J. C., Pflumio, F., and Canque, B. (2004). Molecular characterization of early human T/NK and B-lymphoid progenitor cells in umbilical cord blood. Blood104, 3918–3926.

    Article  PubMed  CAS  Google Scholar 

  • Hanna, J., Bechtel, P., Zhai, Y., Youssef, F., McLachlan, K., and Mandelboim, O. (2004). Novel insights on human NK cells’ immunological modalities revealed by gene expression profiling. J Immunol173, 6547–6563.

    PubMed  CAS  Google Scholar 

  • Heemskerk, M. H., Blom, B., Nolan, G., Stegmann, A. P., Bakker, A. Q., Weijer, K., Res, P. C., and Spits, H. (1997). Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J Exp Med186, 1597–1602.

    Article  PubMed  CAS  Google Scholar 

  • Ikawa, T., Fujimoto, S., Kawamoto, H., Katsura, Y., and Yokota, Y. (2001). Commitment to natural killer cells requires the helix-loop-helix inhibitor Id2. Proc Natl Acad Sci USA98, 5164–5169.

    Article  PubMed  CAS  Google Scholar 

  • Jaleco, A. C., Blom, B., Res, P., Weijer, K., Lanier, L. L., Phillips, J. H., and Spits, H. (1997). Fetal liver contains committed NK progenitors, but is not a site for development of CD34+ cells into T cells. J Immunol159, 694–702.

    PubMed  CAS  Google Scholar 

  • Karre, K., Ljunggren, H. G., Piontek, G., and Kiessling, R. (1986). Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature319, 675–678.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, M. K., Glaccum, M., Brown, S. N., Butz, E. A., Viney, J. L., Embers, M., Matsuki, N., Charrier, K., Sedger, L., Willis, C. R. et al. (2000). Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med191, 771–780.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S., Iizuka, K., Kang, H. S., Dokun, A., French, A. R., Greco, S., and Yokoyama, W. M. (2002). In vivo developmental stages in murine natural killer cell maturation. Nat Immunol3, 523–528.

    Article  PubMed  Google Scholar 

  • Kim, S., Poursine-Laurent, J., Truscott, S. M., Lybarger, L., Song, Y. J., Yang, L., French, A. R., Sunwoo, J. B., Lemieux, S., Hansen, T. H., and Yokoyama, W. M. (2005). Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature436, 709–713.

    Article  PubMed  CAS  Google Scholar 

  • Koka, R., Burkett, P. R., Chien, M., Chai, S., Chan, F., Lodolce, J. P., Boone, D. L., and Ma, A. (2003). Interleukin (IL)-15Ra-deficient natural killer cells survive in normal but not IL-15Ra-deficient mice. J Exp Med197, 977–984.

    Article  PubMed  CAS  Google Scholar 

  • Lanier, L. L., Le, A. M., Civin, C. I., Loken, M. R., and Phillips, J. H. (1986). The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol136, 4480–4486.

    PubMed  CAS  Google Scholar 

  • Lanier, L. L., Testi, R., Bindl, J., and Phillips, J. H. (1989). Identity of Leu-19 (CD56) leukocyte differentiation antigen and neural cell adhesion molecule. J Exp Med169, 2233–2238.

    Article  PubMed  CAS  Google Scholar 

  • Le, P. T., Adams, K. L., Zaya, N., Mathews, H. L., Storkus, W. J., and Ellis, T. M. (2001). Human thymic epithelial cells inhibit IL-15- and IL-2-driven differentiation of NK cells from the early human thymic progenitors. J Immunol166, 2194–2201.

    PubMed  CAS  Google Scholar 

  • Legrand, N., Cupedo, T., van Lent, A. U., Ebeli, M. J., Weijer, K., Hanke, T., and Spits, H. (2006a). Transient accumulation of human mature thymocytes and regulatory T cells with CD28 superagonist in “human immune system” Rag2−/−γc −/− mice. Blood108, 238–245.

    Article  PubMed  CAS  Google Scholar 

  • Legrand, N., Weijer, K., and Spits, H. (2006b). Experimental models to study development and function of the human immune system in vivo. J Immunol176, 2053–2058.

    PubMed  CAS  Google Scholar 

  • Lodoen, M. B., and Lanier, L. L. (2005). Viral modulation of NK cell immunity. Nat Rev Microbiol3, 59–69.

    Article  PubMed  CAS  Google Scholar 

  • Lodolce, J. P., Boone, D. L., Chai, S., Swain, R. E., Dassopoulos, T., Trettin, S., and Ma, A. (1998). IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity9, 669–676.

    Article  PubMed  CAS  Google Scholar 

  • Lohoff, M., Duncan, G. S., Ferrick, D., Mittrucker, H. W., Bischof, S., Prechtl, S., Rollinghoff, M., Schmitt, E., Pahl, A., and Mak, T. W. (2000). Deficiency in the transcription factor interferon regulatory factor (IRF)-2 leads to severely compromised development of natural killer and T helper type 1 cells. J Exp Med192, 325–336.

    Article  PubMed  CAS  Google Scholar 

  • Loza, M. J., and Perussia, B. (2004). The IL-12 signature: NK cell terminal CD56+high stage and effector functions. J Immunol172, 88–96.

    PubMed  CAS  Google Scholar 

  • Macchiarini, F., Manz, M. G., Palucka, A. K., and Shultz, L. D. (2005). Humanized mice: are we there yet? J Exp Med202, 1307–1311.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Fontecha, A., Thomsen, L. L., Brett, S., Gerard, C., Lipp, M., Lanzavecchia, A., and Sallusto, F. (2004). Induced recruitment of NK cells to lymph nodes provides IFN-g for TH1 priming. Nat Immunol5, 1260–1265.

    Article  PubMed  CAS  Google Scholar 

  • McCune, J. M. (1997). Animal models of HIV-1 disease. Science278, 2141–2142.

    Article  PubMed  CAS  Google Scholar 

  • McCune, J. M., Namikawa, R., Kaneshima, H., Shultz, L. D., Lieberman, M., and Weissman, I. L. (1988). The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science241, 1632–1639.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. S., Alley, K. A., and McGlave, P. (1994). Differentiation of natural killer (NK) cells from human primitive marrow progenitors in a stroma-based long-term culture system: identification of a CD34+7+ NK progenitor. Blood83, 2594–2601.

    PubMed  CAS  Google Scholar 

  • Miller, J. S., and McCullar, V. (2001). Human natural killer cells with polyclonal lectin and immunoglobulinlike receptors develop from single hematopoietic stem cells with preferential expression of NKG2A and KIR2DL2/L3/S2. Blood98, 705–713.

    Article  PubMed  CAS  Google Scholar 

  • Morandi, B., Bougras, G., Muller, W. A., Ferlazzo, G., and Munz, C. (2006). NK cells of human secondary lymphoid tissues enhance T cell polarization via IFN-g secretion. Eur J Immunol36, 2394–2400.

    Article  PubMed  CAS  Google Scholar 

  • Mrozek, E., Anderson, P., and Caligiuri, M. A. (1996). Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood87, 2632–2640.

    PubMed  CAS  Google Scholar 

  • Namikawa, R., Kaneshima, H., Lieberman, M., Weissman, I. L., and McCune, J. M. (1988). Infection of the SCID-hu mouse by HIV-1. Science242, 1684–1686.

    Article  PubMed  CAS  Google Scholar 

  • Nosaka, T., van Deursen, J. M., Tripp, R. A., Thierfelder, W. E., Witthuhn, B. A., McMickle, A. P., Doherty, P. C., Grosveld, G. C., and Ihle, J. N. (1995). Defective lymphoid development in mice lacking Jak3. Science270, 800–802.

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara, K., Hida, S., Azimi, N., Tagaya, Y., Sato, T., Yokochi-Fukuda, T., Waldmann, T. A., Taniguchi, T., and Taki, S. (1998). Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature391, 700–703.

    Article  PubMed  CAS  Google Scholar 

  • Parham, P. (2006). Taking license with natural killer cell maturation and repertoire development. Immunol Rev214, 155–160.

    Article  PubMed  CAS  Google Scholar 

  • Park, S. Y., Saijo, K., Takahashi, T., Osawa, M., Arase, H., Hirayama, N., Miyake, K., Nakauchi, H., Shirasawa, T., and Saito, T. (1995). Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity3, 771–782.

    Article  PubMed  CAS  Google Scholar 

  • Res, P., Martinez-Caceres, E., Cristina Jaleco, A., Staal, F., Noteboom, E., Weijer, K., and Spits, H. (1996). CD34+CD38dim cells in the human thymus can differentiate into T, natural killer, and dendritic cells but are distinct from pluripotent stem cells. Blood87, 5196–5206.

    PubMed  CAS  Google Scholar 

  • Roder, J. C., Arlund-Richter, L., and Jondal, M. (1979). Target-effector interaction in the human and murine natural killer system: specificity and xenogeneic reactivity of the solubilized natural killer-target structure complex and its loss in a somatic cell hybrid. J Exp Med150, 471–481.

    Article  PubMed  CAS  Google Scholar 

  • Roifman, C. M., Zhang, J., Chitayat, D., and Sharfe, N. (2000). A partial deficiency of interleukin-7Rα is sufficient to abrogate T-cell development and cause severe combined immunodeficiency. Blood96, 2803–2807.

    PubMed  CAS  Google Scholar 

  • Rossi, M. I., Yokota, T., Medina, K. L., Garrett, K. P., Comp, P. C., Schipul, A. H., Jr., and Kincade, P. W. (2003). B lymphopoiesis is active throughout human life, but there are developmental age-related changes. Blood101, 576–584.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, D. H., Nuccie, B. L., Ritterman, I., Liesveld, J. L., Abboud, C. N., and Insel, R. A. (1997). Expression of interleukin-7 receptor by lineage-negative human bone marrow progenitors with enhanced lymphoid proliferative potential and B-lineage differentiation capacity. Blood89, 929–940.

    PubMed  CAS  Google Scholar 

  • Samson, S. I., Richard, O., Tavian, M., Ranson, T., Vosshenrich, C. A., Colucci, F., Buer, J., Grosveld, F., Godin, I., and Di Santo, J. P. (2003). GATA-3 promotes maturation, IFN-γ production, and liver-specific homing of NK cells. Immunity19, 701–711.

    Article  PubMed  CAS  Google Scholar 

  • Sarun, S., Dalloul, A. H., Laurent, C., Blanc, C., and Schmitt, C. (1998). Human CD34+ thymocyte maturation: pre-T and NK cell differentiation on neonatal thymic stromal cell culture. Cell Immunol190, 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Sato, T., Laver, J. H., Aiba, Y., and Ogawa, M. (1999). NK cell colony formation from human fetal thymocytes. Exp Hematol27, 726–733.

    Article  PubMed  CAS  Google Scholar 

  • Schotte, R., Nagasawa, M., Weijer, K., Spits, H., and Blom, B. (2004). The ETS transcription factor Spi-B is required for human plasmacytoid dendritic cell development. J Exp Med200, 1503–1509.

    Article  PubMed  CAS  Google Scholar 

  • Schotte, R., Rissoan, M. C., Bendriss-Vermare, N., Bridon, J. M., Duhen, T., Weijer, K., Briere, F., and Spits, H. (2003). The transcription factor Spi-B is expressed in plasmacytoid DC precursors and inhibits T-, B-, and NK-cell development. Blood101, 1015–1023.

    Article  PubMed  CAS  Google Scholar 

  • Spits, H., Blom, B., Jaleco, A. C., Weijer, K., Verschuren, M. C., van Dongen, J. J., Heemskerk, M. H., and Res, P. C. (1998). Early stages in the development of human T, natural killer and thymic dendritic cells. Immunol Rev165, 75–86.

    Article  PubMed  CAS  Google Scholar 

  • Spits, H., Lanier, L. L., and Phillips, J. H. (1995). Development of human T and natural killer cells. Blood85, 2654–2670.

    PubMed  CAS  Google Scholar 

  • Suzuki, H., Duncan, G. S., Takimoto, H., and Mak, T. W. (1997). Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor beta chain. J Exp Med185, 499–505.

    Article  PubMed  CAS  Google Scholar 

  • Townsend, M. J., Weinmann, A. S., Matsuda, J. L., Salomon, R., Farnham, P. J., Biron, C. A., Gapin, L., and Glimcher, L. H. (2004). T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i NKT cells. Immunity20, 477–494.

    Article  PubMed  CAS  Google Scholar 

  • Traggiai, E., Chicha, L., Mazzucchelli, L., Bronz, L., Piffaretti, J. C., Lanzavecchia, A., and Manz, M. G. (2004). Development of a human adaptive immune system in cord blood cell-transplanted mice. Science304, 104–107.

    Article  PubMed  CAS  Google Scholar 

  • Trinchieri, G. (1989). Biology of natural killer cells. Adv Immunol47, 187–376.

    Article  PubMed  CAS  Google Scholar 

  • Vosshenrich, C. A., Garcia-Ojeda, M. E., Samson-Villeger, S. I., Pasqualetto, V., Enault, L., Richard-Le Goff, O., Corcuff, E., Guy-Grand, D., Rocha, B., Cumano, A. et al. (2006). A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat Immunol7, 1217–1224.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama, W. M., and Kim, S. (2006). Licensing of natural killer cells by self-major histocompatibility complex class I. Immunol Rev214, 143–154.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama, W. M., Kim, S., and French, A. R. (2004). The dynamic life of natural killer cells. Annu Rev Immunol22, 405–429.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Kovalev, G. I., and Su, L. (2007). HIV-1 infection and pathogenesis in a novel humanized mouse model. Blood109, 2978–2981.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huntington, N.D., Di Santo, J.P. (2008). Humanized Immune System (HIS) Mice as a Tool to Study Human NK Cell Development. In: Nomura, T., Watanabe, T., Habu, S. (eds) Humanized Mice. Current Topics in Microbiology and Immunology, vol 324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75647-7_7

Download citation

Publish with us

Policies and ethics