Skip to main content

New Ultrasound Technologies for Quantitative Assessment of Left Ventricular Function

  • Chapter
  • 1310 Accesses

Unfortunately, there is no easy solution to the continuing need to quantify regional function – the problem being complicated by issues of translational motion, tethering, torsional movements, image quality, and so on. All quantitative methods have at best matched but never outperformed the accuracy and reproducibility of qualitative expert reading for stress echocardiography. They have been shown to help the less expert reader, but should be considered a means of diagnostic support rather than a replacement for expert training. However, in routine work, reading by a trained observer remains the best, and only, way to diagnose wall motion abnormalities during stress echocardiography performed in the clinical arena. As summarized by the American Society of Echocardiography and European Association of Echocardiography recommendations, visual assessment of left ventricular wall thickening and motion remains the standard method of interpretation of stress echocardiography albeit with relevant interobserver and interinstitutional variability. In contrast, under resting conditions, the quantitative approach can offer obvious advantages when compared with standard eyeballing analysis for the detection of changes in longitudinal, circumferential, and radial function (e.g., in the serial assessment of changes induced by cardiotoxic interventions such as chemotherapy). The attempt as old as echocardiography itself to translate the wall motion abnormality from an opinion into a number remains a dream for the clinical cardiologist and a nightmare for the researcher. Maintenance of a critical attitude by the clinical cardiologist and sonographer in the face of the forest of new technologies proposed every year by the manufacturers is essential.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fox K, Garcia MA, Ardissino D, et al (2006) Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology, ESC Committee for Practice Guidelines (CPG). Guidelines on the management of stable angina pectoris: executive summary: the Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. Eur Heart J 27:1341–1381

    Article  PubMed  Google Scholar 

  2. Gibbons RJ, Abrams J, Chatterjee K, et al, American College of Cardiology, American Heart Association Task Force on practice guidelines (Committee on the Management of Patients With Chronic Stable Angina) (2003) ACC/AHA 2002 guideline update for the management of patients with chronic stable angina — summary article: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on the Management of Patients With Chronic Stable Angina). J Am Coll Cardiol 41:159–168

    Article  PubMed  Google Scholar 

  3. Picano E (1992) Stress echocardiography. From pathophysiological toy to diagnostic tool. Point of view. Circulation 85:1604–1612

    CAS  Google Scholar 

  4. Picano E, Lattanzi F, Orlandini A, et al (1991) Stress echocardiography and the human factor: the importance of being expert. J Am Coll Cardiol 17:666–669

    PubMed  CAS  Google Scholar 

  5. Hoffmann R, Lethen H, Picano E, et al (1996) Analysis of interinstitutional observer agreement in interpretation of dobutamine stress echocardiograms. J Am Coll Cardiol 27:330–336

    Article  PubMed  CAS  Google Scholar 

  6. Varga A, Picano E, Pratali L et al (1999) Madness and method in stress echo reading. Eur Heart J 20:1271–1275

    Article  PubMed  CAS  Google Scholar 

  7. Henein M, Gibson D (2002) Dobutamine stress echocardiography: the long and short of it. Eur Heart J 23:520–522

    Article  PubMed  CAS  Google Scholar 

  8. De Castro S, Pandian NG (eds) (2000) Manual of Clinical Echocardiography. Time-Science International Medical

    Google Scholar 

  9. Hirshleifer J, Crawford M, O'Rourke RA, et al (1975) Influence of acute alterations in heart rate and systemic arterial pressure on echocardiographic measures of left ventricular performance in normal human subjects. Circulation 52:835–841

    PubMed  CAS  Google Scholar 

  10. Mann DL, Gillam LD, Weyman AE (1986) Cross-sectional echocardiographic assessment of regional left ventricular performance and myocardial perfusion. Prog Cardiovasc Dis 29:1–52

    Article  PubMed  CAS  Google Scholar 

  11. Epstein FH (2007) MRI of left ventricular function. J Nucl Cardiol 14:729–744

    Article  PubMed  Google Scholar 

  12. Pandian NG, Skorton DJ, Collins SM, et al (1983) Heterogeneity of left ventricular segmental wall thickening and excursion in 2-dimensional echocardiograms of normal human subjects. Am J Cardiol 51:1667–1673

    Article  PubMed  CAS  Google Scholar 

  13. Falsetti HL, Marcus ML, Kerber RE, et al (1981) Quantification of myocardial ischemia and infarction by left ventricular imaging. Circulation 63:747–751

    PubMed  CAS  Google Scholar 

  14. Mondillo S, Galderisi M, Ballo P, et al, Study Group of Echocardiography of the Italian Society of Cardiology (2006) Left ventricular systolic longitudinal function: comparison among simple M-mode, pulsed, and M-mode color tissue Doppler of mitral annulus in healthy individuals. J Am Soc Echocardiogr 9:1085–1091

    Google Scholar 

  15. Borges AC, Sicari R, Picano E, et al (1995) Heterogeneity of left ventricular regional wall thickening following dobutamine infusion in normal human subjects. Eur Heart J 11:1726–1730

    Google Scholar 

  16. Carstensen S, Ali SM, Stensgaard-Hansen F V, et al (1995) Dobutamine-atropine stress echocardiography in asymptomatic healthy individuals. The relativity of stress-induced hyper-kinesia. Circulation 92:3453–3463

    PubMed  CAS  Google Scholar 

  17. Ross J Jr (1986) Assessment of ischemic regional myocardial dysfunction and its reversibility. Circulation 74:1186–1190

    PubMed  Google Scholar 

  18. Derumeaux G, Loufoua J, Pontier G, et al (2001) Tissue Doppler imaging differentiates trans-mural from nontransmural acute myocardial infarction after reperfusion therapy. Circulation 103:589–596

    PubMed  CAS  Google Scholar 

  19. Hui L, Pemberton J, Hickey E, et al (2007) The contribution of left ventricular muscle bands to left ventricular rotation: assessment by a 2-dimensional speckle tracking method. J Am Soc Echocardiogr 20:486–491

    Article  PubMed  Google Scholar 

  20. Matre K, Moen CA, Fanneløp T, et al (2007) Multilayer radial systolic strain can identify subendocardial ischemia: an experimental tissue Doppler imaging study of the porcine left ventricular wall. Eur J Echocardiogr 8:420–430

    Article  PubMed  Google Scholar 

  21. Skulstad H, Urheim S, Edvardsen T, et al (2006) Grading of myocardial dysfunction by tissue Doppler echocardiography: a comparison between velocity, displacement, and strain imaging in acute ischemia. J Am Coll Cardiol 47:1672–1682

    Article  PubMed  Google Scholar 

  22. Tanaka H, Oishi Y, Mizuguchi Y, et al (2008) Contribution of the pericardium to left ventricular torsion and regional myocardial function in patients with total absence of the left pericardium. J Am Soc Echocardiogr 21:268–274

    Article  PubMed  Google Scholar 

  23. Henein M Y, Cailes J, O'Sullivan C, et al (1995) Abnormal ventricular long-axis function in systemic sclerosis. Chest 108:1533–1540

    Article  PubMed  CAS  Google Scholar 

  24. Picano E (2003) Diabetic cardiomyopathy. the importance of being earliest. J Am Coll Cardiol 42:454–457

    Article  PubMed  Google Scholar 

  25. Henein M Y, Gibson DG (1999) Long axis function in disease. Heart 81:229–231

    PubMed  CAS  Google Scholar 

  26. Bogaert J, Rademakers FE (2001) Regional nonuniformity of normal adult human left ventricle. Am J Physiol Heart Circ Physiol 280:H610–H620

    PubMed  CAS  Google Scholar 

  27. Duncan AM, O'Sullivan CA, Carr-White GS, et al (2001) Long axis electromechanics during dobutamine stress in patients with coronary artery disease and left ventricular dysfunction. Heart 86:397–404

    Article  PubMed  CAS  Google Scholar 

  28. Henein MY, Dinarevic S, O'Sullivan CA, et al (1998) Exercise echocardiography in children with Kawasaki disease: ventricular long axis is selectively abnormal. Am J Cardiol 81:1356–1359

    Article  PubMed  CAS  Google Scholar 

  29. Gibson D (1993) M-mode echocardiography-an obsolete technique? In: Chambers J, Monaghan MJ (eds) Echocardiography: an international review. Oxford University Press, Oxford, pp. 1–9

    Google Scholar 

  30. Strotmann JM, Escobar Kvitting J P, Wilkenshoff UM, et al (1999) Anatomic M-mode echocar-diography: a new approach to assess regional myocardial function. A comparative in vivo and in vitro study of both fundamental and second harmonic imaging modes. J Am Soc Echocar-diogr 12:300–307

    Article  CAS  Google Scholar 

  31. Li W, Hornung TS, Francis D P, et al (2004) Relation of biventricular function quantified by stress echocardiography to cardiopulmonary exercise capacity in adults with Mustard (atrial switch) procedure for transposition of the great arteries. Circulation 110:1380–1386

    Article  PubMed  Google Scholar 

  32. Chan J, Wahi S, Cain P, et al (2000) Anatomical M-mode: a novel technique for the quantitative evaluation of regional wall motion analysis during dobutamine echocardiography. Int J Card Imaging 16:247–255

    Article  PubMed  CAS  Google Scholar 

  33. Mimbs JS, Bauwens D, Cohen RD, et al (1981) Effects of myocardial ischemia on quantitative ultrasonic backscatter and identification of responsible determinants. Circ Res 49:89–85

    PubMed  CAS  Google Scholar 

  34. Picano E, Faletra F, Marini C, et al (1993) Increased echodensity of transiently asynergic myocardium in humans: a novel echocardiographic sign of myocardial ischemia. J Am Coll Cardiol 21:199–207

    Article  PubMed  CAS  Google Scholar 

  35. Vitale DE, Bonow RO, Gerundo G, et al (1995) Alterations in ultrasonic backscatter during exercise-induced myocardial ischemia in humans. Circulation 92:1452–1457

    PubMed  CAS  Google Scholar 

  36. Gigli G, Maffei S, Picano E, et al (1995) Cardiac cycle-dependent gray-level variation is not distorted by abnormal septal motion after cardiac surgery: a transesophageal videodensito-metric study in humans. J Am Soc Echocardiogr 8:475–481

    Article  PubMed  CAS  Google Scholar 

  37. Marini C, Picano E, Varga A, et al (1996) Cyclic variation in myocardial gray level as a marker of viability in man. A videodensitometric study. Eur Heart J 17:472–479

    PubMed  CAS  Google Scholar 

  38. Perez JE, Waggoner AD, Barzilai B, et al (1992) On-line assessment of ventricular function by automatic boundary detection and ultrasonic backscatter imaging. J Am Coll Cardiol 19:313–320

    PubMed  CAS  Google Scholar 

  39. Lang RM, Vignon P, Weinert L, et al (1996) Echocardiographic quantification of regional left ventricular wall motion with color kinesis. Circulation 93:1877–1885

    PubMed  CAS  Google Scholar 

  40. Mor-Avi V, Caiani EG, Collins KA, et al (2001) Combined assessment of myocardial per-fusion and regional left ventricular function by analysis of contrast-enhanced power modulation images. Circulation 104:352–357

    PubMed  CAS  Google Scholar 

  41. Ishii K, Miwa K, Sakurai T, et al (2008) Detection of postischemic regional left ventricular delayed outward wall motion or diastolic stunning after exercise-induced ischemia in patients with stable effort angina by using color kinesis. J Am Soc Echocardiogr 21:309–314

    Article  PubMed  Google Scholar 

  42. Sutherland GR, Stewart MJ, Grouendstroem KWE, et al (1994) Colour Doppler myocardial imaging: a new technique for assessment of myocardial function. J Am Soc Echocardiogr 7:441–458

    PubMed  CAS  Google Scholar 

  43. Hatle L, Sutherland GR (2000) Regional myocardial function — a new approach. Eur Heart J 21:1337–1357

    Article  PubMed  CAS  Google Scholar 

  44. Derumeaux G, Ovize M, Loufoua J, et al (1998) Doppler tissue imaging quantitates regional wall motion during ischemia and reperfusion. Circulation 97:1970–1977

    PubMed  CAS  Google Scholar 

  45. Gorcsan J III, Strum D P, Mandarino WA, et al (1997) Quantitative assessment of alterations in regional left ventricular contractility with color-coded tissue Doppler echocardiography: comparison with sonomicrometry and pressure-volume relations. Circulation 95:2423–2433

    PubMed  Google Scholar 

  46. Fraser AG, Payne N, Madler CF, et al (2003) Feasibility and reproducibility of off-line tissue doppler measurement of regional myocardial function during dobutamine stress echocardiog-raphy. Eur J Echocardiogr 4:43–53

    Article  PubMed  CAS  Google Scholar 

  47. Madler C F, Payne N, Wilkenshoff U, et al (2003) Noninvasive diagnosis of coronary artery disease by quantitative stress echocardiography: optimal diagnostic models using off-line tissue Doppler in the MYDISE study. Eur Heart J 25:123–131

    Google Scholar 

  48. Pasquet A, Yamada E, Armstrong G, et al (1999) Influence of dobutamine or exercise stress on the results of pulsed-wave Doppler assessment of myocardial velocity. Am Heart J 138:753–758

    Article  PubMed  CAS  Google Scholar 

  49. Cain P, Short L, Baglin T, et al (2002) Development of a fully quantitative approach to the interpretation of stress echocardiography using radial and longitudinal myocardial velocities. J Am Soc Echocardiogr 15:752–767

    Google Scholar 

  50. Thomas G (2004) Tissue Doppler echocardiography — a case of right tool, wrong use. Cardio-vasc Ultrasound 2:12

    Article  Google Scholar 

  51. Fleming D, Xia X, Mc Dicken WN, et al (1994) Myocardial velocity gradients detected by Doppler imaging. Br J Radiol 799:679–688

    Article  Google Scholar 

  52. Urheim S, Edvardsen T, Torp H, et al (2000) Myocardial strain by Doppler echocardiography: validation of a new method to quantify regional myocardial function. Circulation 102:1158–1164

    PubMed  CAS  Google Scholar 

  53. Marciniak M, Claus P, Streb W, et al (2008) The quantification of dipyridamole induced changes in regional deformation in normal, stunned or infarcted myocardium as measured by strain and strain rate: an experimental study. Int J Cardiovasc Imaging 24:365–376

    Article  PubMed  Google Scholar 

  54. Hoffmann R, Altiok E, Nowak B, et al (2002) Strain rate measurement by Doppler echocar-diography allows improved assessment of myocardial viability in patients with depressed left ventricular function. J Am Coll Cardiol 39:443–449

    Article  PubMed  Google Scholar 

  55. Ingul CB, Stoylen A, Slordahl SA, et al (2007) Automated analysis of myocardial deformation at dobutamine stress echocardiography: an angiographic validation. J Am Coll Cardiol 49:1651–1659

    Article  PubMed  Google Scholar 

  56. Voigt JU, Exner B, Schmiedehausen K, et al (2003) Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation 107:2120–2126

    Article  PubMed  Google Scholar 

  57. Mastouri R, Mahenthiran J, Kamalesh M, Gradus-Pizlo I, Feigenbaum H, Sawada SG (2008) Prediction of ischemic events by anatomic M-mode strain rate stress echocardiography. J Am Soc Echocardiogr 21:299–306

    Article  PubMed  Google Scholar 

  58. Marwick TH (2008) Strain without pain: application of parametric imaging of strain rate response for the quantitation of stress echocardiography. J Am Soc Echocardiogr 21:307–308

    Article  PubMed  Google Scholar 

  59. Helle-Valle T, Crosby J, Edvardsen T et al (2005) New-noninvasive method for assessment of left ventricular rotation: Speckle Tracking Echocardiography. Circulation 112:3149–3156

    Article  PubMed  Google Scholar 

  60. Suffoletto MS, Dohi K, Cannesson M, et al (2006) Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy. Circulation 113:960–968

    Article  PubMed  Google Scholar 

  61. Amundsen BH, Helle-Valle T, Edvardsen T et al (2006) Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47:789–793

    Article  PubMed  Google Scholar 

  62. Stefani L, Toncelli L, Di Tante V, et al (2008) Supernormal functional reserve of apical segments in elite soccer players: an ultrasound speckle tracking handgrip stress study. Cardiovasc Ultrasound 26:14

    Article  Google Scholar 

  63. Hanekom L, Cho GY, Leano R, et al (2007) Comparison of two-dimensional speckle and tissue Doppler strain measurement during dobutamine stress echocardiography: an angiographic correlation. Eur Heart J 28:1765–1772

    Article  PubMed  Google Scholar 

  64. Abraham T P, Pinheiro AC (2008) Speckle-derived strain a better tool for quantification of stress echocardiography? J Am Coll Cardiol 51:158–160

    Article  PubMed  Google Scholar 

  65. Takeuchi M, Lang RM (2007) Three-dimensional stress testing: volumetric acquisitions. Car-diol Clin 25:267–272

    Article  Google Scholar 

  66. Hung J, Lang R, Flachskampf F, et al, ASE (2007) 3D echocardiography: a review of the current status and future directions. J Am Soc Echocardiogr 20:213–233

    Article  PubMed  Google Scholar 

  67. Ahmad M, Xie T, McCulloch M, et al (2001) Real-time three-dimensional dobutamine stress echocardiography in assessment stress echocardiography in assessment of ischemia: comparison with two-dimensional dobutamine stress echocardiography. J Am Coll Cardiol 37:1303–1309

    Article  PubMed  CAS  Google Scholar 

  68. Matsumura Y, Hozumi T, Arai K, et al (2005) Non-invasive assessment of myocardial ischae-mia using new real-time three-dimensional dobutamine stress echocardiography: comparison with conventional two-dimensional methods. Eur Heart J 26:1625–1632

    Article  PubMed  Google Scholar 

  69. Takeuchi M, Otani S, Weinert L, et al (2006) Comparison of contrast-enhanced real-time live 3-dimensional dobutamine stress echocardiography with contrast 2-dimensional echocar-diography for detecting stress-induced wall-motion abnormalities. J Am Soc Echocardiogr 19:294–299

    Article  PubMed  Google Scholar 

  70. Pulerwitz T, Hirata K, Abe Y, et al (2006) Feasibility of using a real-time 3-dimensional technique for contrast dobutamine stress echocardiography. J Am Soc Echocardiogr 19:540–545

    Article  PubMed  Google Scholar 

  71. Eroglu E, D'hooge J, Herbots L, et al (2006) Comparison of real-time tri-plane and conventional 2D dobutamine stress echocardiography for the assessment of coronary artery disease. Eur Heart J 27:1719–1724

    Article  PubMed  Google Scholar 

  72. Walimbe V, Garcia M, Lalude O, et al (2007) Quantitative real-time 3-dimensional stress echocardiography: a preliminary investigation of feasibility and effectiveness. J Am Soc Echocardiogr 20:13–22

    Article  PubMed  Google Scholar 

  73. Bombardini T (2005) Myocardial contractility in the echo lab: molecular, cellular and patho-physiological basis. Cardiovasc Ultrasound 3:27

    Article  PubMed  Google Scholar 

  74. Borlaug BA, Melenovsky V, Redfield MM, et al (2007) Impact of arterial load and loading sequence on left ventricular tissue velocities in humans. J Am Coll Cardiol 50:1570–1577

    Article  PubMed  Google Scholar 

  75. Lown B (1997) The tyranny of technology. Hosp Pract 32:25

    CAS  Google Scholar 

  76. Feinstein AR (1985) Diagnostic and spectral markers. Clinical epidemiology. Saunders, Philadelphia, pp 597–631

    Google Scholar 

  77. US Dept of Health and human services (2004) Challenge and opportunity on the critical path of new medical products. FDA report. US Dept of Health and Human Services, Washington DC

    Google Scholar 

  78. Vasan RS (2006) Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation 113:2335–2362

    Article  PubMed  Google Scholar 

  79. Picano E, Landini L, Distante A, et al (1985) Angle dependence of ultrasonic backscatter in arterial tissues: a study in vitro. Circulation 72:572–576

    PubMed  CAS  Google Scholar 

  80. Kawasaki M, Bouma BE, Bressner J, et al (2006) Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques. J Am Coll Cardiol 48:81–88

    Article  PubMed  Google Scholar 

  81. Nagueh S F, Middleton KJ, Kopelen HA, et al (1997) Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 30:1527–1533

    Article  PubMed  CAS  Google Scholar 

  82. Paulus WJ, Tschöpe C, Sanderson JE, et al (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 28:2539–2550

    Article  PubMed  Google Scholar 

  83. Galderisi M, Cattaneo F, Mondillo S (2007) Doppler echocardiography and myocardial dyssynchrony: a practical update of old and new ultrasound technologies. Cardiovasc Ultrasound 5:28

    Article  PubMed  Google Scholar 

  84. Pellikka PA, Nagueh SF, Elhendy AA, et al, American Society of Echocardiography (2007) American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr 20:1021–1041

    Article  PubMed  Google Scholar 

  85. Sicari R, Nihoyannopoulos P, Evangelista A, et al, European Association of Echocardiography (2008) Stress echocardiography consensus statement of the European Association of Echocar-diography. Eur J Echocardiogr 9:415–437

    Article  PubMed  Google Scholar 

  86. Marwick TH (2003) Clinical applications of tissue Doppler imaging: a promise fulfilled. Heart 89:1377–1378

    Article  PubMed  CAS  Google Scholar 

  87. Picard MH, Popp RL, Weyman AE (2008) Assessment of left ventricular function by echocar-diography: a technique in evolution. J Am Soc Echocardiogr 21:14–21

    Article  PubMed  Google Scholar 

  88. Colombo F (1996) A warning from the Internet: our freedom is at risk. La Repubblica, 8 January

    Google Scholar 

  89. Diamond GA (1986) Monkey business. Am J Cardiol 57:471–475

    Article  PubMed  CAS  Google Scholar 

  90. Berry W (1997) The unsettling of American. Sierra Club Books, San Francisco

    Google Scholar 

  91. Baroldi G (1995) About inflammation and atherosclerosis. G Ital Cardiol 25:241–245

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marwick, T.H., Borges, A.C., Picano, E. (2009). New Ultrasound Technologies for Quantitative Assessment of Left Ventricular Function. In: Picano, E. (eds) Stress Echocardiography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76466-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76466-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76465-6

  • Online ISBN: 978-3-540-76466-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics