Skip to main content

Fuzzy Morphology for Edge Detection and Segmentation

  • Conference paper
Advances in Visual Computing (ISVC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4842))

Included in the following conference series:

Abstract

This paper proposes a new approach for structure based separation of image objects using fuzzy morphology. With set operators in fuzzy context, we apply an adaptive alpha-cut morphological processing for edge detection, image enhancement and segmentation. A Top-hat transform is first applied to the input image and the resulting image is thresholded to a binary form. The image is then thinned using hit-or-miss transform. Finally, m-connectivity is used to keep the desired number of connected pixels. The output image is overlayed on the original for enhanced boundaries. Experiments were performed using real images of aerial views, sign boards and biological objects. A comparison to other edge enhancement techniques like unsharp masking, sobel and laplacian filtering shows improved performance by the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gonzalez, W.: Digital Image Processing, 2nd edn. Prentice Hall, Englewood Cliffs (2002)

    Google Scholar 

  2. Liu, H.C., Srinath, M.D.: Partial shape classification using contour matching in distance transformation. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 1072–10791 (1990)

    Article  Google Scholar 

  3. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. 207, 187–217 (1980)

    Article  Google Scholar 

  4. Brown, L.G.: A survey of image registeration techniques. ACM Computing Surveys 24, 352–376 (1992)

    Article  Google Scholar 

  5. Hoff, W., Ahuja, N.: Surface from stereo: Integrating feature matching, disparity estimation, and contoure detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 121–136 (1989)

    Article  Google Scholar 

  6. Lengagne, R.P.F., Monga, O.: Using crest lines to guide sufrace reconstructin from stereo. In: IEEE International Conference on Pattern Recognition (1996)

    Google Scholar 

  7. Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)

    MATH  Google Scholar 

  8. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)

    MATH  Google Scholar 

  9. Rosenfeld, A., Kak, A.C.: Digital Picture Processing. Academic Press, Boston (1982)

    Google Scholar 

  10. Preston, D.: Modern Cellular Automata. Plenum Press, New York (1984)

    MATH  Google Scholar 

  11. Maragos, P., Schafer, R.W.: Morphological filters. par i: Their set-theoretic analysis and relations to linear shift-invariant filters. part ii their relations to median, order-statistic, and stack filters. IEEE Transactions on Pattern Analysis and Machine Intelligence (1987)

    Google Scholar 

  12. Maragos, P., Schafer, R.W.: Morphological systems for mulitdimensional signal processing. In: Trew, R.J. (ed.) Proc. of IEEE, pp. 690–710 (1990)

    Google Scholar 

  13. Heijmans, H.: Morphological Image Operators. Academic Press, Boston (1994)

    MATH  Google Scholar 

  14. Serra: Image Analysis and Mathematical Morphology. Academic Press, Boston (1988)

    Google Scholar 

  15. Bovik, A.: Morphological filtering for image enhancement and feature detection. In: Bovik, A. (ed.) Handbook of image and video processing, pp. 135–156 (2005)

    Google Scholar 

  16. Bloch, I., Maitre, H.: Fuzzy mathematical morphologies: A comparative study. Pattern Recognition (1995)

    Google Scholar 

  17. Soille: Morphological Image Analysis: Principles and Applications. Springer, Berlin (1999)

    MATH  Google Scholar 

  18. Tizhoosh: Fuzzy Image Processing. Springer, Berlin (1997)

    Google Scholar 

  19. Rosenfeld: The fuzzy geometry of image subsets. Pattern Recognition Letters (1984)

    Google Scholar 

  20. Kaufmann, G.: Fuzzy Mathematical Models in Engineering and Mangement Science. Elsevier Science Inc. New York (1988)

    Google Scholar 

  21. Nachtegael, Van der Weken, Van De Ville, Kerre (eds.): Fuzzy Filters for Image Processing. Studies in Fuzziness and Soft Computing, vol. 1. Springer, Heidelberg (2004)

    Google Scholar 

  22. Popov: Fuzzy mathematical morphology and its applications to colour image processing. W S C G (2007)

    Google Scholar 

  23. Ito, A.: Tissue boundary extraction from ultrasonogram by fuzzy morphology processing. In: 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 20, IEEE, Los Alamitos (1998)

    Google Scholar 

  24. Maccarone, T., Gesu: Fuzzy mathematical morphology to analyse astronomical images. In: International Conference on Pattern Recognition. (1992)

    Google Scholar 

  25. Wirth, N.: Applications of fuzzy morphology to contrast enhancement. In: Annual Meeting of the N. American Fuzzy Information Processing Society (2005)

    Google Scholar 

  26. Großert, Köppen, N.: A new approach to fuzzy morphology based on fuzzy integral and its application in image processing. In: ICPR 1996, vol. 2, pp. 625–630 (2005)

    Google Scholar 

  27. Strauss, C.: Fuzzy morphology for omnidirectional images. In: IEEE International Conference on Image Processing, vol. 2, pp. 141–144. IEEE, Los Alamitos (2005)

    Chapter  Google Scholar 

  28. Bloch, S.: Why robots should use fuzzy mathematical morphology. In: 1st Int. ICSC-NAISO Congress on Neuro-Fuzzy Technologies (2002)

    Google Scholar 

  29. Otsu, N.: A threshold selection method from gray-level histogram. IEEE Transactin on Systems, Man and Cybernetics (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

George Bebis Richard Boyle Bahram Parvin Darko Koracin Nikos Paragios Syeda-Mahmood Tanveer Tao Ju Zicheng Liu Sabine Coquillart Carolina Cruz-Neira Torsten Müller Tom Malzbender

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mansoor, A.B., Mian, A.S., Khan, A., Khan, S.A. (2007). Fuzzy Morphology for Edge Detection and Segmentation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2007. Lecture Notes in Computer Science, vol 4842. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76856-2_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76856-2_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76855-5

  • Online ISBN: 978-3-540-76856-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics