Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4851))

Abstract

The split-radix FFT computes a size-n complex DFT, when n is a large power of 2, using just \(4n\lg n-6n+8\) arithmetic operations on real numbers. This operation count was first announced in 1968, stood unchallenged for more than thirty years, and was widely believed to be best possible.

Recently James Van Buskirk posted software demonstrating that the split-radix FFT is not optimal. Van Buskirk’s software computes a size-n complex DFT using only \((34/9+o(1))n\lg n\) arithmetic operations on real numbers. There are now three papers attempting to explain the improvement from 4 to 34/9: Johnson and Frigo, IEEE Transactions on Signal Processing, 2007; Lundy and Van Buskirk, Computing, 2007; and this paper.

This paper presents the “tangent FFT,” a straightforward in-place cache-friendly DFT algorithm having exactly the same operation counts as Van Buskirk’s algorithm. This paper expresses the tangent FFT as a sequence of standard polynomial operations, and pinpoints how the tangent FFT saves time compared to the split-radix FFT. This description is helpful not only for understanding and analyzing Van Buskirk’s improvement but also for minimizing the memory-access costs of the FFT.

Permanent ID of this document: a9a77cef9a7b77f9b8b305e276d5fe25. Date of this document: 2007.09.19.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1968 Fall Joint Computer Conference. In: AFIPS conference proceedings, vol. 33, part one. See [13] (1968)

    Google Scholar 

  2. Cooley, J.W., Tukey, J.W.: An Algorithm for the Machine Calculation of Complex Fourier Series. Mathematics of Computation 19, 297–301 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  3. Duhamel, P., Hollmann, H.: Split-Radix FFT algorithm. Electronics Letters 20, 14–16 (1984)

    Article  Google Scholar 

  4. Duhamel, P., Vetterli, M.: Fast Fourier Transforms: a Tutorial Review and a State of the Art. Signal Processing 19, 259–299 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fiduccia, C.M.: Polynomial Evaluation Via the Division Algorithm: the Fast Fourier Transform Revisited. In: [10], pp. 88–93 (1972)

    Google Scholar 

  6. Gauss, C.F.: Werke, Band 3 Königlichen Gesellschaft der Wissenschaften. Göttingen (1866)

    Google Scholar 

  7. Johnson, S.G., Frigo, M.: A Modified Split-Radix FFT with Fewer Arithmetic Operations. IEEE Trans. on Signal Processing 55, 111–119 (2007)

    Article  Google Scholar 

  8. Lundy, T.J., Van Buskirk, J.: A New Matrix Approach to Real FFTs and Convolutions of Length 2k. Computing 80, 23–45 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Martens, J.B.: Recursive Cyclotomic Factorization—A New Algorithm for Calculating the Discrete Fourier Transform. IEEE Trans. Acoustics, Speech, and Signal Processing 32, 750–761 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Rosenberg, A.L.: Fourth Annual ACM Symposium on Theory Of Computing. Association for Computing Machinery, New York (1972)

    Google Scholar 

  11. Sorensen, H.V., Heideman, M.T., Burrus, C.S.: On Computing the Split-Radix FFT. IEEE Trans. Acoustics, Speech, and Signal Processing 34, 152–156 (1986)

    Article  Google Scholar 

  12. Vetterli, M., Nussbaumer, H.J.: Simple FFT and DCT Algorithms with Reduced Number of Operations. Signal Processing 6, 262–278 (1984)

    MathSciNet  Google Scholar 

  13. Yavne, R.: An Economical Method for Calculating the Discrete Fourier Transform. In: [1], pp. 115–125 (1968)

    Google Scholar 

  14. Zhou, F., Kornerup, P.: A New Fast Discrete Fourier Transform. J. VLSI Signal Processing 20, 219–232 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Serdar Boztaş Hsiao-Feng (Francis) Lu

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bernstein, D.J. (2007). The Tangent FFT. In: Boztaş, S., Lu, HF.(. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2007. Lecture Notes in Computer Science, vol 4851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77224-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77224-8_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77223-1

  • Online ISBN: 978-3-540-77224-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics