Skip to main content

Measuring the Charge and Spin States of Electrons on Individual Dopant Atoms in Silicon

  • Chapter
Book cover Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures

Abstract

We review an ongoing effort to demonstrate technologies required for quantum computing with phosphorus donors in silicon. The main aspect of our research is to achieve control over charge and spin states of individual dopant atoms. This work has required the development of new techniques for engineering silicon nanodevices at the atomic level. We follow an approach for implanting single phosphorus ions into silicon substrates with integrated p–i–n detectors. Configuring our devices with radio-frequency single-electron transistors (RF-SETs) allows for charge sensing at low temperatures. In this context, we perform measurements of single-electron charge transfer between individual phosphorus donors. In a parallel effort, we employ nanoscale Schottky contacts for populating and depopulating individual dopant atoms. Of particular interest is coherent manipulation of single-electron charge and spin states on individual dopant atoms. Charge manipulation between coupled donor states may be achieved by either external microwave pumping or intrinsic tunnel coupling. Spin manipulation, on the other hand, involves magnetic resonance. In this context, we pursue electrically detected spin resonance in phosphorus-doped devices with a decreasing number of dopant atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.E. Kane, A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)

    Article  ADS  Google Scholar 

  2. L.C.L. Hollenberg, A.S. Dzurak, C. Wellard, A.R. Hamilton, D.J. Reilly, G.M. Milburn, R.G. Clark, Charge-based quantum computing using single donors in semiconductors. Phys. Rev. B 69, 113301 (2004)

    Article  ADS  Google Scholar 

  3. A.S. Dzurak et al., Charge-based silicon quantum computer architectures using controlled single-ion implantation, arXiv:cond-mat/0306265 (2003)

  4. L.C.L. Hollenberg, A.D. Greentree, A.G. Fowler, C.J. Wellard, Two-dimensional architectures for donor-based quantum computing. Phys. Rev. B 74, 045311 (2006)

    Article  ADS  Google Scholar 

  5. A.K. Ramdas, S. Rudriguez, Spectroscopy of the solid-state analogues of the hydrogen atom: donors and acceptors in semiconductors. Rep. Prog. Phys. 44, 1297–1397 (1981)

    Article  ADS  Google Scholar 

  6. W. Kohn, J.M. Luttinger, Theory of donor states in silicon. Phys. Rev. 98, 915–922 (1955)

    Article  ADS  Google Scholar 

  7. W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, L.P. Kouwenhoven, Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2003)

    Article  Google Scholar 

  8. T. Hayashi, T. Fujisawa, H.D. Cheong, Y.H. Jeong, Y. Hirayama, Coherent manipulation of electronic states in a double quantum dot. Phys. Rev. Lett. 91, 226804 (2003)

    Article  ADS  Google Scholar 

  9. J.R. Petta, A.C. Johnson, C.M. Marcus, M.P. Hanson, A.C. Gossard, Manipulation of a single charge in a double quantum dot. Phys. Rev. Lett. 93, 186802 (2004)

    Article  ADS  Google Scholar 

  10. C.J. Wellard, L.C.L. Hollengerg, S. Das Sarma, Theory of the microwave spectroscopy of a phosphorus-donor charge qubit in silicon: coherent control in the Si:P quantum-computer architecture. Phys. Rev. B 74, 075306 (2006)

    Article  ADS  Google Scholar 

  11. X. Hu, B. Koiller, S. Das Sarma, Charge qubits in semiconductor quantum computer architecture: tunnel coupling and decoherence. Phys. Rev. B 71, 235332 (2005)

    Article  ADS  Google Scholar 

  12. D.N. Jamieson et al., Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions. Appl. Phys. Lett. 86, 202101 (2005)

    Article  ADS  Google Scholar 

  13. M. Mitic et al., Single atom Si nanoelectronics using controlled single-ion implantation. Microelectron. Eng. 78–79, 279–286 (2005)

    Article  Google Scholar 

  14. R.J. Schoelkopf, P. Wahlgren, A.A. Kozhevnikov, P. Delsing, D.E. Prober, The radio-frequency single-electron transistor (RF-SET): a fast and ultrasensitive electrometer. Science 280, 1238–1242 (1998)

    Article  ADS  Google Scholar 

  15. A. Aassime, D. Gunnarsson, K. Bladh, P. Delsing, Radio-frequency single-electron transistor: toward the shot-noise limit. Appl. Phys. Lett. 79, 4031–4033 (2001)

    Article  ADS  Google Scholar 

  16. A.A. Clerk, S.M. Girvin, A.K. Nguyen, A.D. Stone, Resonant Cooper-pair tunneling: quantum noise and measurement characteristics. Phys. Rev. Lett. 89, 176804 (2002)

    Article  ADS  Google Scholar 

  17. T.A. Fulton, P.L. Gammel, D.J. Bishop, L.N. Dunkleberger, G.J. Dolan, Observation of combined Josephson and charging effects in small tunnel junction circuits. Phys. Rev. Lett. 63, 1307–1310 (1989)

    Article  ADS  Google Scholar 

  18. D.N. Jamieson et al., Quantum effects in ion implanted devices. Nucl. Instrum. Methods Phys. Res. B 249, 221–225 (2006)

    Article  ADS  Google Scholar 

  19. C. Wang, J.P. Snyder, J.R. Tucker, Sub-40 nm PtSi Schottky source/drain metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 74, 11741176 (1999)

    Google Scholar 

  20. G. Larrieu, E. Dubois, X. Wallart, X. Baie, J. Katcki, Formation of platinum-based silicide contacts: kinetics, stoichiometry, and current drive capabilities. J. Appl. Phys. 94, 7801–7810 (2003)

    Article  ADS  Google Scholar 

  21. D.R. McCamey, H. Huebl, M.S. Brandt, W.D. Hutchison, J.C. McCallum, R.G. Clark, A.R. Hamilton, Electrically-detected magnetic resonance in ion-implanted Si:P nanostructures. Appl. Phys. Lett. 89, 182115 (2006)

    Article  ADS  Google Scholar 

  22. A. Stesmans, V.V. Afanas’ev, Electron spin resonance features of interface defects in thermal (100)Si/SiO2. J. Appl. Phys. 83, 2449–2457 (1998)

    Article  ADS  Google Scholar 

  23. C. Boehme, K. Lips, Electrical detection of spin coherence in silicon. Phys. Rev. Lett. 91, 246603 (2003)

    Article  ADS  Google Scholar 

  24. A.R. Stegner, C. Boehme, H. Huebl, M. Stutzmann, K. Lips, M.S. Brandt, Electrical detection of coherent 31P spin quantum states. Nat. Phys. 2, 835–838 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andresen, S.E.S. et al. (2009). Measuring the Charge and Spin States of Electrons on Individual Dopant Atoms in Silicon. In: Fanciulli, M. (eds) Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures. Topics in Applied Physics, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79365-6_9

Download citation

Publish with us

Policies and ethics