Skip to main content

Functional Object Class Detection Based on Learned Affordance Cues

  • Conference paper
Computer Vision Systems (ICVS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5008))

Included in the following conference series:

Abstract

Current approaches to visual object class detection mainly focus on the recognition of basic level categories, such as cars, motorbikes, mugs and bottles. Although these approaches have demonstrated impressive performance in terms of recognition, their restriction to these categories seems inadequate in the context of embodied, cognitive agents. Here, distinguishing objects according to functional aspects based on object affordances is important in order to enable manipulation of and interaction between physical objects and cognitive agent.

In this paper, we propose a system for the detection of functional object classes, based on a representation of visually distinct hints on object affordances (affordance cues). It spans the complete range from tutor-driven acquisition of affordance cues, learning of corresponding object models, and detecting novel instances of functional object classes in real images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bogoni, L., Bajcsy, R.: Interactive recognition and representation of functionality. In: CVIU, vol. 62(2), pp. 194–214 (1995)

    Google Scholar 

  2. Csurka, G., Dance, C.R., Fan, L., Willarnowski, J., Bray, C.: Visual categorization with bags of keypoints. In: SLCV (2004)

    Google Scholar 

  3. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results.

    Google Scholar 

  4. Ferrari, V., Tuytelaars, T., Van Gool, L.J.: Object detection by contour segment networks. In: ECCV (2006)

    Google Scholar 

  5. Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Groups of adjacent contour segments for object detection. Rapport De Recherche Inria (2006)

    Google Scholar 

  6. Gibson, J.J.: The theory of affordance. In: Percieving, Acting, and Knowing, Lawrence Erlbaum Associates, Hillsdale, NJ (1977)

    Google Scholar 

  7. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Technical Report 7694, California Institute of Technology (2007)

    Google Scholar 

  8. Jones, M.J., Rehg, J.M.: Statistical color models with application to skin detection. In: CVPR, pp. 1274–1280. IEEE Computer Society, Los Alamitos (1999)

    Google Scholar 

  9. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML 2001 (2001)

    Google Scholar 

  10. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR 2006 (2006)

    Google Scholar 

  11. Leibe, B., Leonardis, A., Schiele, B.: An implicit shape model for combined object categorization and segmentation. In: Toward Category-Level Object Recognition, Springer, Heidelberg (2006)

    Google Scholar 

  12. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  13. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.J.: A comparison of affine region detectors. In: IJCV 2005 (2005)

    Google Scholar 

  14. Rivlin, E., Dickinson, S.J., Rosenfeld, A.: Recognition by functional parts. Computer Vision and Image Understanding: CVIU 62(2), 164–176 (1995)

    Article  MATH  Google Scholar 

  15. Rosch, E., Mervis, C.B., Gray, W.D., Johnson, D.M., Braem, P.B.: Basic objects in natural categories. Cognitive Psychology (1976)

    Google Scholar 

  16. Saxena, A., Driemeyer, J., Ng, A.Y.: Robotic grasping of novel objects using vision. In: IJRR (2007)

    Google Scholar 

  17. Stark, L., Bowyer, K.: Achieving generalized object recognition through reasoning about association of function to structure. PAMI 13(10), 1097–1104 (1991)

    Google Scholar 

  18. Stark, L., Hoover, A.W., Goldgof, D.B., Bowyer, K.W.: Function-based recognition from incomplete knowledge of shape. In: WQV 1993, pp. 11–22 (1993)

    Google Scholar 

  19. Stark, M., Schiele, B.: How good are local features for classes of geometric objects. In: ICCV (October 2007)

    Google Scholar 

  20. Sun, J., Zhang, W.W., Tang, X., Shum, H.Y.: Background cut. In: ECCV II, pp. 628–641 (2006)

    Google Scholar 

  21. Winston, P.H., Katz, B., Binford, T.O., Lowry, M.R.: Learning physical descriptions from functional definitions, examples, and precedents. In: AAAI 1983 (1983)

    Google Scholar 

  22. Zillich, M.: Incremental Indexing for Parameter-Free Perceptual Grouping. In: 31st Workshop of the Austrian Association for Pattern Recognition (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Antonios Gasteratos Markus Vincze John K. Tsotsos

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stark, M., Lies, P., Zillich, M., Wyatt, J., Schiele, B. (2008). Functional Object Class Detection Based on Learned Affordance Cues. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds) Computer Vision Systems. ICVS 2008. Lecture Notes in Computer Science, vol 5008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79547-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79547-6_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79546-9

  • Online ISBN: 978-3-540-79547-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics