Skip to main content

EEG–fMRI in Idiopathic Generalised Epilepsy (Adults)

  • Chapter
  • First Online:
EEG - fMRI
  • 4129 Accesses

Abstract

At the highest level, epilepsy syndromes are classified as being either focal or generalised (Commission on Classification and Terminology of the International League Against Epilepsy 1981, 1989). Focal epilepsies appear to arise from a localised part of the brain and then spread (Commission on Classification and Terminology of the International League Against Epilepsy 1989). They are usually identified by pinpointing the onset of seizures from a specific location, and there will often be a focal structural abnormality. A more challenging problem for imaging is understanding the structures involved in idiopathic generalised epilepsy (IGE), which does not have identifiable lesions and appears to arise bilaterally and symmetrically throughout the brain (Blumenfeld 2005; Commission on Classification and Terminology of the International League Against Epilepsy 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Otherwise referred to as the default mode network (DMN).

References

  • Aghakhani Y, Bagshaw AP, Benar CG, et al. (2004) fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain 127:1127–1144

    Article  PubMed  CAS  Google Scholar 

  • Andreasen NC, O’Leary DS, Cizadlo T, et al. (1995) Remembering the past: two facets of episodic memory explored with positron emission tomography. Am J Psychiatry 152:1576–1585

    PubMed  CAS  Google Scholar 

  • Archer JS, Abbott DF, Waites AB, Jackson GD (2003) fMRI “deactivation” of the posterior cingulate during generalized spike and wave. Neuroimage 20:1915–1922

    Article  PubMed  Google Scholar 

  • Avoli M, Rogawski MA, Avanzini G (2001) Generalized epileptic disorders: an update. Epilepsia 42:445–457

    Article  PubMed  CAS  Google Scholar 

  • Blumenfeld H (2005) Cellular and network mechanisms of spike-wave seizures. Epilepsia 46(Suppl 9):21–33

    Article  PubMed  CAS  Google Scholar 

  • Carmichael DW, Hamandi K, Laufs H, Duncan JS, Thomas DL, Lemieux L (2008) An investigation of the relationship between BOLD and perfusion signal changes during epileptic generalised spike wave activity. Magn Reson Imaging 26(7):870–873

    Article  PubMed  Google Scholar 

  • Commission on Classification and Terminology of the International League Against Epilepsy (1981) Proposal for revised clinical and electroencephalographic classification of epileptic seizures. Epilepsia 22:489–501

    Article  Google Scholar 

  • Commission on Classification and Terminology of the International League Against Epilepsy (1989) Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 30:389–399

    Article  Google Scholar 

  • Damoiseaux JS, Rombouts SA, Barkhof F, et al. (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853

    Article  PubMed  CAS  Google Scholar 

  • Gloor P (1968) Generalized cortico-reticular epilepsies. Some considerations on the pathophysiology of generalized bilaterally synchronous spike and wave discharge. Epilepsia 9:249–263

    Article  PubMed  CAS  Google Scholar 

  • Glover GH (1999) Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage 9:416–429

    Article  PubMed  CAS  Google Scholar 

  • Gotman J, Grova C, Bagshaw A, et al. (2005) Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci USA 102:15236–15240

    Article  PubMed  CAS  Google Scholar 

  • Greenberg DA, Durner M, Delgado-Escueta AV, et al. (1992) Evidence for multiple gene loci in the expression of the common generalized epilepsies. Neurology 42:56–62

    PubMed  CAS  Google Scholar 

  • Hamandi K, Laufs H, Noth U, et al. (2008) BOLD and perfusion changes during epileptic generalised spike wave activity. Neuroimage 39:608–618

    Article  PubMed  Google Scholar 

  • Hamandi K, Salek-Haddadi A, Laufs H, et al. (2006) EEG–fMRI of idiopathic and secondarily generalized epilepsies. Neuroimage 31:1700–1710

    Article  PubMed  Google Scholar 

  • Jallon P, Latour P (2005) Epidemiology of idiopathic generalized epilepsies. Epilepsia 46(Suppl 9):10–14

    Article  PubMed  Google Scholar 

  • Kostopoulos GK (2000) Spike-and-wave discharges of absence seizures as a transformation of sleep spindles: the continuing development of a hypothesis. Clin Neurophysiol 111(Suppl 2): S27–S38

    Article  PubMed  Google Scholar 

  • Krakow K, Woermann FG, Symms MR, et al. (1999) EEG-triggered functional MRI of interictal epileptiform activity in patients with partial seizures. Brain. 1999;122(Pt 9):1679–1688

    Article  PubMed  Google Scholar 

  • Labate A, Briellmann RS, Abbott DF, et al. (2005) Typical childhood absence seizures are associated with thalamic activation. Epileptic Disord 7:373–377

    PubMed  CAS  Google Scholar 

  • Laufs H, Lengler U, Hamandi K, et al. (2006) Linking generalized spike-and-wave discharges and resting state brain activity by using EEG/fMRI in a patient with absence seizures. Epilepsia 47:444–448

    Article  PubMed  Google Scholar 

  • Lemieux L, Salek-Haddadi A, Josephs O, et al. (2001) Event-related fMRI with simultaneous and continuous EEG: description of the method and initial case report. Neuroimage 14:780–787

    Article  PubMed  CAS  Google Scholar 

  • Luders HO, Acharya J, Alexopoulos A, et al. (2006) Are epilepsy classifications based on epileptic syndromes and seizure types outdated? Epileptic Disord 8:81–85

    PubMed  CAS  Google Scholar 

  • Mazoyer B, Zago L, Mellet E, et al. (2001) Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 54:287–298

    Article  PubMed  CAS  Google Scholar 

  • Meeren HK, Pijn JP, Van Luijtelaar EL, et al. (2002) Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci 22:1480–1495

    PubMed  CAS  Google Scholar 

  • Moeller F, Siebner HR, Wolff S, et al. (2008a) Changes in activity of striato-thalamo-cortical network precede generalized spike wave discharges. Neuroimage 39:1839–1849

    Article  PubMed  Google Scholar 

  • Moeller F, Siebner HR, Wolff S, et al. (2008b) Simultaneous EEG–fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia 49:1510–1519

    Article  PubMed  Google Scholar 

  • Nersesyan H, Hyder F, Rothman DL, Blumenfeld H (2004) Dynamic fMRI and EEG recordings during spike-wave seizures and generalized tonic-clonic seizures in WAG/Rij rats. J Cereb Blood Flow Metab 24:589–599

    Article  PubMed  Google Scholar 

  • Nordli DR Jr (2005) Idiopathic generalized epilepsies recognized by the International League Against Epilepsy. Epilepsia 46(Suppl 9):48–56

    Article  PubMed  Google Scholar 

  • Pinault D, O’Brien TJ (2005) Cellular and network mechanisms of genetically-determined absence seizures. Thalamus Relat Syst 3:181–203

    Article  PubMed  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, et al. (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682

    Article  PubMed  CAS  Google Scholar 

  • Sadleir LG, Farrell K, Smith S, et al. (2006) Electroclinical features of absence seizures in childhood absence epilepsy. Neurology 67:413–418

    Article  PubMed  CAS  Google Scholar 

  • Salek-Haddadi A, Lemieux L, Merschhemke M, et al. (2003) Functional magnetic resonance imaging of human absence seizures. Ann Neurol 53:663–667

    Article  PubMed  Google Scholar 

  • Steriade M (2005) Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends Neurosci 28:317–324

    Article  PubMed  CAS  Google Scholar 

  • Steriade M (2006) Neuronal substrates of spike-wave seizures and hypsarrhythmia in corticothalamic systems. Adv Neurol 97:149–154

    PubMed  Google Scholar 

  • Steriade M, Amzica F (2003) Sleep oscillations developing into seizures in corticothalamic systems. Epilepsia 44(Suppl 12):9–20

    Article  PubMed  Google Scholar 

  • Tae WS, Hong SB, Joo EY, et al. (2006) Structural brain abnormalities in juvenile myoclonic epilepsy patients: volumetry and voxel-based morphometry. Korean J Radiol 7:162–172

    Article  PubMed  Google Scholar 

  • Tenney JR, Duong TQ, King JA, et al. (2003) Corticothalamic modulation during absence seizures in rats: a functional MRI assessment. Epilepsia 44:1133–1140

    Article  PubMed  Google Scholar 

  • Tenney JR, Marshall PC, King JA, Ferris CF (2004) fMRI of generalized absence status epilepticus in conscious marmoset monkeys reveals corticothalamic activation. Epilepsia 45:1240–1247

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Danny Flanagan and Dr David Abbott for developing the analytical methodology and data analysis.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carney, P., Jackson, G. (2009). EEG–fMRI in Idiopathic Generalised Epilepsy (Adults). In: Mulert, C., Lemieux, L. (eds) EEG - fMRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87919-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87919-0_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87918-3

  • Online ISBN: 978-3-540-87919-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics