Skip to main content

Symmetries of Differential Equations and the Problem of Integrability

  • Chapter
Integrability

Part of the book series: Lecture Notes in Physics ((LNP,volume 767))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.E. Adler, A.B. Shabat, and R.I. Yamilov, The symmetry approach to the problem of integrability, Theor. Math. Phys. 125(3), 355–424, 2000.

    Article  MathSciNet  Google Scholar 

  2. M. Adler, On the trace functional for formal pseudodifferential operators and the symplectic structure of the KdV type equations, Inventiones Math. 50, 219–248, 1979.

    Article  MATH  ADS  Google Scholar 

  3. C. Athorne and A. Fordy, Generalized KdV and MKdV equations associated with symmetric spaces, J. Phys. A. 20, 1377–1386, 1987.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. S.P. Balandin and V.V. Sokolov, On the Painlevé test for non-Abelian equations, Phys. Lett. A 246(3–4), 267–272, 1998.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. I.M. Bakirov and Popkov V.Yu., Completely integrable systems of brusselator type, Phys. Lett. A 141(5), 275–277, 1989.

    Google Scholar 

  6. M.Ju. Balakhnev, A class of integrable evolutionary vector equations. Theor. Math. Phys. 142(1), 8–14, 2005.

    Google Scholar 

  7. F. Beukers, J. Sanders, and Jing Ping Wang On Integrability of Systems of Evolution Equations, J. Differ. Equations 172, 396–408, 2001.

    Google Scholar 

  8. R. Camassa, D.D.D. Holm, An integrable shallow water equation with peaked solutions, Phys. Rev. Lett. 71, 1661–1664, 1993.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. F. Calogero, Why Are Certain Nonlinear PDE’s Both Widely Applicable and Integrable?, in bookWhat is integrability?, Springer-Verlag (Springer Series in Nonlinear Dynamics), 1–62, 1991.

    Google Scholar 

  10. F. Calogero and A. Degasperis, Spectral transforms and solitons, North-Holland Publ. Co., Amsterdam-New York-Oxford, 1982.

    Google Scholar 

  11. A. Degasperis and M. Procesi, Asymptotic integrability, inSymmetry and Perturbation Theory, A. Degasperis and G. Gaeta (eds.), World Scientific, 23–37, 1999.

    Google Scholar 

  12. A. Degasperis, D.D. Holm, and A.N.W. Hone, A New Integrable Equation with Peakon Solutions, to appear in NEEDS 2001 Proceedings, Theoretical and Mathematical Physics, 2002.

    Google Scholar 

  13. I.Ya. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, John Wiley&Sons, Chichester, 1993.

    Google Scholar 

  14. V.G. Drinfeld and V.V. Sokolov, Lie algebras and equations of Korteweg de Vries type. J. Sov. Math. 30, 1975–2036, 1985.

    Article  Google Scholar 

  15. V.G. Drinfeld, S.I. Svinolupov, and Sokolov, V.V., Classification of fifth order evolution equations with infinite series of conservation laws, Doklady of Ukrainian Akademy, Section A 10, 7–10, 1985.

    Google Scholar 

  16. A.S. Fokas, Symmetries and integrability, Stud. Appl. Math. 77, 253–299, 1987.

    MATH  MathSciNet  Google Scholar 

  17. A.S. Fokas, A symmetry approach to exactly solvable evolution equations, J. Math. Phys. 21(6), 1318–1325, 1980.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. A.P. Fordy and P. Kulish, Nonlinear Schrödinger equations and simple Lie algebras, Commun. Math. Phys. 89, 427–443, 1983.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. A.P. Fordy, Derivative nonlinear Schrödinger equations and Hermitian symmetric spaces, J. Phys. A.: Math. Gen. 17, 1235–1245, 1984.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. I.M. Gel’fand and L.A. Dickii, Asymptotic properties of the resolvent of Sturm-Lioville equations, and the algebra of Korteweg de Vries equations. Russian Math. Surveys 30, 77–113, 1975.

    Article  MATH  ADS  Google Scholar 

  21. I.M. Gel’fand, Yu. I.Manin, and M.A. Shubin Poisson brackets and kernel of variational derivative in formal variational calculus. Funct. Anal. Appl. 10(4), 30–34, 1976.

    MATH  Google Scholar 

  22. I.Z. Golubchik and V.V. Sokolov Multicomponent generalization of the hierarchy of the Landau-Lifshitz equation, Theor. Math. Phys. 124(1), 909–917, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  23. I.T. Habibullin, Phys. Lett. A 369, 1993.

    Google Scholar 

  24. I.T. Habibullin, V.V. Sokolov, and R.I. Yamilov, Multi-component integrable systems and non-associative structures, in Nonlinear Physics: theory and experiment, E. Alfinito, M. Boiti, L. Martina, F. Pempinelli (eds.), World Scientific Publisher: Singapore, 139–168, 1996.

    Google Scholar 

  25. R.H. Heredero, V.V. Sokolov, and S.I. Svinolupov Toward the classification of third order integrable evolution equations, J. Phys. A: Math. General 13, 4557–4568, 1994.

    Article  ADS  Google Scholar 

  26. E. Husson, Sur un thereme de H.Poincaré, relativement d’un solide pesant, Acta Math. 31, 71–88, 1908.

    Article  MathSciNet  Google Scholar 

  27. N.Kh. Ibragimov and A.B. Shabat, Evolution equation with non-trivial Lie-Bäcklund group, Funct. Anal. Appl. 14(1), 25–36, 1980. [in Russian]

    MathSciNet  Google Scholar 

  28. N.Kh. Ibragimov and A.B. Shabat, Infinite Lie-Bäcklund algebras, Funct. Anal. Appl. 14(4), 79–80, 1980. [in Russian]

    MATH  MathSciNet  Google Scholar 

  29. N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., Providence R.I. 39, 1968.

    Google Scholar 

  30. I. Kaplansky, An Introduction to Differential Algebra, Hermann, Paris, 1957.

    MATH  Google Scholar 

  31. L. Martínez Alonso and A.B. Shabat, Towards a theory of differential constraints of a hydrodynamic hierarchy, J. Nonlin. Math. Phys. 10, 229–242, 2003.

    Google Scholar 

  32. A.G. Meshkov, On symmetry classification of third order evolutionary systems of divergent type, Fund. Appl. Math. 12(7), 141–161, 2006. [in Russian]

    Google Scholar 

  33. A.G. Meshkov and M.Ju. Balakhnev, Two-field integrable evolutionary systems of the third order and their differential substitutions. Symmetry, Integrability and Geometry: Methods and Applications. 4, 018, 29, 2008.

    MathSciNet  Google Scholar 

  34. A.G. Meshkov and V.V. Sokolov, Integrable evolution equations on the N-dimensional sphere, Comm. Math. Phys. 232(1), 1–18, 2002.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. A.G. Meshkov and V.V. Sokolov, Classification of integrable divergent N-component evolution systems, Theoret. Math. Phys. 139(2), 609–622, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  36. A.V. Mikhailov and V.S. Novikov Perturbative Symmetry Approach, J. Phys. A 35, 4775–4790, 2002.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. A.V. Mikhailov and V.S. Novikov Classification of Integrable Benjamin-Ono type equations, Moscow Math. J. 3(4), 1293–1305, 2003.

    MATH  MathSciNet  Google Scholar 

  38. A.V. Mikhailov, V.S. Novikov, and J.P. Wang. On classification of integrable non-evolutionary equations. Stud. Appl. Math. 118, 419–457, 2007.

    Article  MathSciNet  Google Scholar 

  39. A.V. Mikhailov, V.S. Novikov, and J.P. Wang., Symbolic representation and classification of integrable systems, in Algebraic Theory of Differential Equations, M.A.H. MacCallum and A.V. Mikhailov (eds.), CUP, 2008 (to appear)

    Google Scholar 

  40. A.V. Mikhailov and A.B. Shabat, Integrability conditions for systems of two equationsut=A(u)uxx+B(u, ux). I, Theor. Math. Phys. 62(2), 163–185, 1985.

    Article  MathSciNet  Google Scholar 

  41. A.V. Mikhailov and A.B. Shabat, Integrability conditions for systems of two equationsut=A(u)uxx+B(u, ux). II, Theor. Math. Phys. 66(1), 47–65, 1986

    Google Scholar 

  42. A.V. Mikhailov, A.B. Shabat, and R.I. Yamilov, The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems, Russian Math. Surveys 42(4), 1–63, 1987.

    Article  MathSciNet  ADS  Google Scholar 

  43. A.V. Mikhailov, A.B. Shabat, and R.I. Yamilov, Extension of the module of invertible transformations. Classification of integrable systems, Commun. Math. Phys. 115, 1–19, 1988.

    Article  ADS  MathSciNet  Google Scholar 

  44. A.V. Mikhailov and V.V. Sokolov, Integrable ODEs on Associative Algebras, Comm. Math. Phys. 211(1), 231–251, 2000.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. A.V. Mikhailov, V.V. Sokolov, A.B. Shabat, The symmetry approach to classification of integrable equations, in What is Integrability? V.E. Zakharov (ed.), Springer series in Nonlinear Dynamics, 115–184, 1991.

    Google Scholar 

  46. A.V. Mikhailov, R.I. Yamilov, Towards classification of (2+1)– dimensional integrable equations. Integrability conditions I., J. Phys. A: Math. Gen. 31, 6707–6715, 1998.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. R.M. Miura, Korteweg-de Vries equation and generalization. I. A remarkable explicit nonlinear transformation, J. Math. Phys. 9, 1202–1204, 1968.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. V.S. Novikov and J.P. Wang. Symmetry structure of integrable nonevolutionary equations. Stud. Appl. Math. 119(4):393–428, 2007.

    Article  MathSciNet  Google Scholar 

  49. P.J. Olver, Applications of Lie groups to differential equations, Volume 107 of Graduate texts in Mathematics, Springer Verlag, New York, 1993.

    Google Scholar 

  50. P.J. Olver and V.V. Sokolov, Integrable evolution equations on associative algebras, Comm. Math. Phys. 193(2), 245–268, 1998.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. P.J. Olver and V.V. Sokolov, Non-abelian integrable systems of the derivative nonlinear Schrödinger type, Inverse Problems 14(6), L5–L8, 1998.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. P. Olver, J.P. Wang, Classification of integrable one-component systems on associative algebras, Proc. London Math. Soc. 81(3), 566–586, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  53. J. Sanders, J.P. Wang, On the Integrability of homogeneous scalar evolution equations, J. Differ. Equations 147, 410–434, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  54. A.B. Shabat and R.I. Yamilov On a complete list of integrable systems of the formiut=uxx+f(u, v, ux, vx), -ivt=vxx+g(u, v, ux, vx), Preprint BFAN, Ufa, 28 pages, 1985.

    Google Scholar 

  55. V.V. Sokolov and A.B. Shabat, Classification of Integrable Evolution Equations, Soviet Sci. Rev., Section C 4, 221–280, 1984.

    MathSciNet  Google Scholar 

  56. V.V. Sokolov, On the symmetries of evolution equations, Russian Math. Surveys 43(5), 165–204, 1988.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  57. V.V. Sokolov, A new integrable case for the Kirchhoff equation, Theoret. Math. Phys. 129(1), 1335–1340, 2001.

    Article  MATH  Google Scholar 

  58. V.V. Sokolov and S.I. Svinolupov, Vector-matrix generalizations of classical integrable equations, Theor. Math. Phys. 100(2), 959–962, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  59. V.V. Sokolov and S.I. Svinolupov, Weak nonlocalities in evolution equations, Math. Notes 48(5–6), 1234–1239, 1991.

    Google Scholar 

  60. V.V. Sokolov and T. Wolf, A symmetry test for quasilinear coupled systems, Inverse Problems 15, L5–L11, 1999

    Article  MATH  ADS  MathSciNet  Google Scholar 

  61. V.V. Sokolov and S.I. Svinolupov, Deformation of nonassociative algebras and integrable differential equations, Acta Applicandae Mathematica, 41(1–2), 323–339, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  62. V.V. Sokolov, T. Wolf, Classification of integrable polynomial vector evolution equations, J. Phys. A 2001, 34, 11139–11148.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  63. V.A. Steklov On the motion of a rigid body in a fluid, Kharkov, 234 pages, 1893.

    Google Scholar 

  64. S.I. Svinolupov, Second-order evolution equations with symmetries, Uspehi Mat. Nauk 40(5), 263, 1985.

    MathSciNet  Google Scholar 

  65. S.I. Svinolupov, On the analogues of the Burgers equation, Phys. Lett. A 135(1), 32–36, 1989.

    Article  ADS  MathSciNet  Google Scholar 

  66. S.I. Svinolupov, Generalized Schrödinger equations and Jordan pairs, Comm. Math. Phys. 143(1), 559–575, 1992.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  67. S.I. Svinolupov, Jordan algebras and generalized Korteweg-de Vries equations, Theor. Math. Phys. 87(3), 391–403, 1991.

    Article  MathSciNet  Google Scholar 

  68. S.I. Svinolupov and V.V. Sokolov, Deformations of Jordan triple systems and integrable equations, Theor. Math. Phys. 108(3), 1160–1163, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  69. S.I. Svinolupov and V.V. Sokolov, Evolution equations with nontrivial conservation laws, Func. analiz i pril. 16(4), 86–87, 1982. [in Russian],

    MathSciNet  Google Scholar 

  70. S.I. Svinolupov and V.V. Sokolov, On conservation laws for equations with nontrivial Lie-Bäcklund algebra, in Integrable systems, A.B. Shabat (ed.), Ufa, BFAN SSSR 53–67, 1982. [in Russian].

    Google Scholar 

  71. S.I. Svinolupov and V.V. Sokolov, Factorization of evolution equations, Russian Math. Surveys 47(3), 127–162, 1992.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  72. S.I. Svinolupov and V.V. Sokolov, Deformations of Jordan triple systems and integrable equations, Theoret. Math. Phys. 1996, 108(3), 1160–1163, 1997.

    Article  MathSciNet  Google Scholar 

  73. S.I. Svinolupov, V.V. Sokolov, and R.I. Yamilov, Bäcklund transformations for integrable evolution equations, Dokl. Akad. Nauk SSSR 271(4), 802–805, 1983.

    MathSciNet  Google Scholar 

  74. T. Tsuchida, M. Wadati, New integrable systems of derivative nonlinear Schrödinger equations with multiple components, Phys. Lett. A 257, 53–64, 1999.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  75. T. Tsuchida, T. Wolf, Classification of polynomial integrable systems of mixed scalar and vector evolution equations, J. Phys. A: Math. Gen. 38, 7691–7733, 2005.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  76. Jing Ping Wang, Symmetries and Conservation Laws of Evolution Equations, PhD thesis, published by Thomas Stieltjes Institute for Mathematics, Amsterdam, 1998.

    Google Scholar 

  77. V.E. Zakharov, E.I. Schulman, Integrability of Nonlinear Systems and Perturbation Theory, in What is Integrability? V.E. Zakharov (ed.), Springer series in Nonlinear Dynamics, 185–250, 1991.

    Google Scholar 

  78. A.V. Zhiber and A.B. Shabat, Klein-Gordon equations with a nontrivial group, Sov. Phys. Dokl. 247(5), 1103–1107, 1979.

    MathSciNet  Google Scholar 

  79. A.V. Zhiber and A.B. Shabat, Systems of equations ux=p(u, v), vy=q(u, v) possessing symmetries, Sov. Math. Dokl. 30, 23–26, 1984.

    MATH  Google Scholar 

  80. A.V. Zhiber and V.V. Sokolov Exactly integrable hyperbolic equations of Liouville type, Russian Math. Surveys 56(1), 63–106, 2001.

    Article  MathSciNet  ADS  Google Scholar 

  81. A.V. Zhiber, V.V. Sokolov, and Startsev S. Ya, On nonlinear Darbouxintegrable hyperbolic equations, Doklady RAN 343(6), 746–748, 1995.

    MathSciNet  Google Scholar 

  82. S.L. Ziglin The branching of solutions and non-existing of first integrals in Hamiltonian mechanics. I, II, Funct. Anal. Appl. 16(3), 30–41, 1982; 17(1), 8–23, 1983.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mikhailov, A., Sokolov, V. (2009). Symmetries of Differential Equations and the Problem of Integrability. In: Mikhailov, A.V. (eds) Integrability. Lecture Notes in Physics, vol 767. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88111-7_2

Download citation

Publish with us

Policies and ethics