Skip to main content

Introduction to Multimodal Compression of Biomedical Data

  • Chapter
  • First Online:
Advanced Biosignal Processing

Abstract

The aim of this chapter is to provide the reader with a new vision of compressing jointly medical images/videos and signals. This type of compression is called “multimodal compression”. The basic idea is that only one codec can be used to compress, at the same time, a combination of medical data (i.e. images, videos and signals). For instance, instead of using one codec for each signal or image/video which might complicate the software implementation, one should proceed as follows: for the encoding process, data are merged using various specific functions before being encoded using a given codec (e.g. JPEG, JPEG 2000 or H.264). For the decoding phase, data are first decoded and afterwards separated using an inverse merging-function. The performance of this approach in terms of compression-distortion appears promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal A, Rowberg A, and Kim Y (2003) Fast JPEG 2000 decoder and its use in medical imaging. IEEE Trans Inf Technol Biomed 7:184–190

    Article  Google Scholar 

  2. Ahmeda S, and Abo-Zahhad M (2001) A new hybrid algorithm for ECG signal compression based on the wavelet transformation of the linearly predicted error. Med Eng Phys 23:117–126

    Article  Google Scholar 

  3. Al-Fahoum A, and Reza A (2004) Perceptually tuned JPEG coder for echocardiac image compression. IEEE Trans Inf Technol Biomed. 8:313–320

    Article  Google Scholar 

  4. Alshamali A, and Al-Smadi A (2001) Combined coding and wavelet transform for ECG compression. J Med Eng Technol 25:212–216

    Article  Google Scholar 

  5. Antoniol G, and Tonnela P (1997) EEG data compression techniques. IEEE Eng in Med and Biol 44:105–114

    Article  Google Scholar 

  6. Batista L, Melcher E, and Carvalho L (2001) Compression of ECG signals by optimized quantization of discrete cosine transform coefficients. Med Eng Phys 23:127–134

    Article  Google Scholar 

  7. Beall D, Shelton P, Kinsey T et al. (2000) Image compression and chest radiograph interpretation: image perception comparison between uncompressed chest radiographs and chest radiographs stored using 10:1 JPEG compression. J Digital Imaging 13:33–38

    Article  Google Scholar 

  8. Bilgin A, Marcellin M, and Albatch M (2003) Compression of ECG signals using JPEG2000. IEEE Trans on Cons Electr 49:833-840

    Article  Google Scholar 

  9. Borsali R, Naït-Ali A and Lemoine J (2005) ECG compression using an ensemble polynomial modelling: comparison with the wavelet based technique. Biomed Eng 39:138–142

    Article  Google Scholar 

  10. Brennecke R, U. Burgel, Rippin G et al. (2001) Comparison of image compression viability for lossy and lossless JPEG and Wavelet data reduction in coronary angiography. Int J Cardiovasc Imaging 17:1–12

    Article  Google Scholar 

  11. Bruckmann A, and Uhl A (2000) Selective medical image compression techniques for telemedical and archiving applications. Comput Biol Med 30:153–169

    Article  Google Scholar 

  12. Cardenas-Barrera J, Lorenzo-Ginori J, and Rodriguez-Valdivia E (2004) A wavelet-packets based algorithm for EEG signal compression. Med Inform Intern Med 29:15–27

    Article  Google Scholar 

  13. Cavaro-Ménard C, Goupil F, Denizot B et al. (2001) Wavelet compression of numerical chest radiograph: quantitative et qualitative evaluation of degradations. Proceed of Inter Conf on Visual, Imaging and Image Processing (VIIP'01), 406–410, Spain

    Google Scholar 

  14. Chatterjee A, Naïtt-Ali A, and Siarry P (2005) An input-delay neural network based approach for piecewise ECG signal compression. IEEE Trans Biom Eng 52:945–947

    Article  Google Scholar 

  15. Chen W, Hsieh L, and Yuan S (2004) High performance data compression method with pattern matching for biomedical ECG and arterial pulse waveforms. Comp Method Prog Biomed 74:11–27

    Article  Google Scholar 

  16. Chen Y, and TAI S (2005) Enhancing ultrasound by morphology filter and eliminating ringing effect. Eur J Radiol 53:293–305

    Article  Google Scholar 

  17. Chen Z, Chang R, and Kuo W (1999) Adaptive predictive multiplicative autoregressive model for medical image compression. IEEE Trans Med Imaging 18:181–184

    Article  Google Scholar 

  18. Chiu E V J, and Atkins MS. (2001) Wavelet-based space-frequency compression of ultrasound images. IEEE Trans Inf Technol Biomed 5:300–310

    Article  Google Scholar 

  19. Cho H, Kim J, and Ra J (1999) Interslice coding for medical three-dimensional images using an adaptive mode selection technique in wavelet transform domain. J Digit Imaging 12:173–184

    Article  Google Scholar 

  20. de A Berger P, de O Nascimento FA, da Rocha AF et al. (2007) A new wavelet-based algorithm for compression of EMG signals. Conf Proc IEEE EMBS 1554–1557

    Google Scholar 

  21. de A Berger P, de O Nascimento F A, da Rocha A F et al. (2006) Compression of EMG signals with wavelet transform and artificial neural networks. Physiol Meas 457–465

    Google Scholar 

  22. Filho E, Silva Ed, and Carvalho Md (2008) On EMG signal compression with recurrent patterns. IEEE Trans Biomed Eng 55:1920–1923

    Google Scholar 

  23. Forchhammer S, Wu X, and Andersen J (2004) Optimal context quantization in lossless compression of image data sequences. IEEE Trans Image Process 13:509–517

    Article  Google Scholar 

  24. Giurcaneanu C D, Tabus I, and Mereuta S (2001) Using contexts and R-R interval estimation in lossless ECG compression. Comput Meth Prog Biomed 67:177–186

    Article  Google Scholar 

  25. Gruter R, Egger O, Vesin J et al. (2000) Rank-order polynomial subband decomposition for medical image compression. IEEE Trans Med Imaging 19:1044–1052

    Article  Google Scholar 

  26. Hang X, Greenberg N, Qin J, et al. (2001) Compression of echocardiographic scan line data using wavelet packet transform. Comput Cardiol 28:425–427

    Google Scholar 

  27. Iyriboz T, Zukoski M, Hopper K et al. (1999) A comparison of wavelet and Joint Photographic Experts Group lossy compression methods applied to medical images. J Digit Imaging 12:14–17

    Article  Google Scholar 

  28. Kalyanpur A, Neklesa V, Taylor C et al. (2000) Evaluation of JPEG and wavelet compression of body CT images for direct digital teleradiologic transmission. Radiology 217:772–779

    Article  Google Scholar 

  29. Kaur L, Chauhan R, and Saxena S (2005) Space-frequency quantiser design for ultrasound image compression based on minimum description length criterion. Med Biol Eng Comput 43:33–39

    Article  Google Scholar 

  30. Ko J, Rusinek H, Naidich D, McGuinness G, Rubinowitz A, Leitman B, and Martino J (2003) Wavelet compression of low-dose chest CT data: effect on lung nodule detection. Radiology 228:70–75

    Article  Google Scholar 

  31. Ko JP, Chang J, Bomsztyk E et al. (2005) Effect of CT image compression on computer-assited lung nodule volume measurement. Radiology 237:83–88

    Google Scholar 

  32. Koski, Tossavainenn T, and Juhola M (2004) On lossy transform compression of ECG signals with reference to deformation of their parameter values. J Med Eng Technol 28:61–66

    Google Scholar 

  33. Liu Z, Xiong Z, Wu Q, Wang Y, et al. (2002) Cascaded differential and wavelet compression of chromosome images. IEEE Trans Biomed Eng 49:372–383

    Article  Google Scholar 

  34. Lu M., and Zhou W. (2004) An EEG compression algorithm based on embedded zerotree wavelet (EZW). Space Med Eng 17:232–234

    Google Scholar 

  35. M. Rodriguez, Ayala A, Rodriguez S, et al. (2004) Application of the Max-Lloyd quantizer for ECG compression in diving mammals. Comp Meth Prog Biomed 2004:13–21

    Google Scholar 

  36. Miaou S, and Chao S (2005) Wavelet-based lossy-to-lossless ECG compression in a unified vector quantization framework. IEEE Trans Biomed Eng 52:539–543

    Article  Google Scholar 

  37. Miaou S, and Chen S (2004) Automatic quality control for wavelet-based compression of volumetric medical images using distortion-constrained adaptive vector quantization. IEEE Trans Med Imaging 23:1417–1429

    Article  Google Scholar 

  38. Miaou S, and Lin C (2002) A quality-on-demand algorithm for wavelet-based compression of electrocardiogram signals. IEEE Trans Biomed Eng 49:233–239

    Article  Google Scholar 

  39. Miaou S, and Yen H (2001) Multichannel ECG compression using multichannel adaptive vector quantization. IEEE Trans Biomed Eng 48:1203–1209

    Article  Google Scholar 

  40. Mitra S, Yang S, and Kustov V (1998) Wavelet-based vector quantization for high-fidelity compression and fast transmission of medical images. J Digit Imaging 11:24–30

    Article  Google Scholar 

  41. Munteanu A, Cornelis J, Auwera G Vd, et al. (1999a) Wavelet image compression–the quadtree coding approach. IEEE Trans Inf Technol Biomed 3:176–185

    Google Scholar 

  42. Munteanu A, Cornelis J, and Cristea P (1999b) Wavelet-based lossless compression of coronary angiographic images. IEEE Trans Med Imaging 18:272–281

    Article  Google Scholar 

  43. Naït-Ali A (2007) A New Technique for Progressive ECG Transmission using Discrete Radon Transform. Int J Biomed Sci 2:27–32

    Google Scholar 

  44. Naït-Ali A, Borsali R, Khaled W et al. (2007) Time division multiplexing based-method for compressing ECG signals: application for normal and abnormal cases. J MedEng Tech 31:324–331

    Google Scholar 

  45. Naït-Ali A, and Cavaro-Menard C (2008) Compression of biomedical images and signals. ISTE-WILEY

    Book  Google Scholar 

  46. Nunes J, and Naït-Ali A (2005) ECG compression by modelling the instantaneous module/phase of its DCT. J Clin Monit Comput 19:207–214

    Article  Google Scholar 

  47. Nygaard R, Melnikov G, and Katsaggelos A (2001) A rate distortion optimal ECG coding algorithm. IEEE Trans Biomed Eng 48:28–40

    Article  Google Scholar 

  48. Ouamri A, and Naït-Ali A (2007) ECG compression method using Lorentzian functions Model. Digital Signal Processing 17:319–326

    Article  Google Scholar 

  49. Paiva JP, Kelencz CA, Paiva HM, Gavão RK et al. (2008) Adaptive wavelet EMG compression based on local optimization of filter banks. Physiol Meas 29:843–856

    Article  Google Scholar 

  50. Penedo M, Pearlman W, Tahoces P et al. (2003) Region-based wavelet coding methods for digital mammography. IEEE Trans Med Imaging 22:1288–1296

    Article  Google Scholar 

  51. Peng K, and Kieffer J (2004) Embedded image compression based on wavelet pixel classification and sorting. IEEE Trans Image Process 13:1011–1017

    Article  MathSciNet  Google Scholar 

  52. Persons K, Palisson P, Manduca A, Erickson B, and Savcenko V (1999) An analytical look at the effects of compression on medical images. J Digit Imaging 10:60–66

    Article  Google Scholar 

  53. Rajoub B (2002) An efficient coding algorithm for the compression of ECG signals using the wavelet transform. IEEE Trans Biomed Eng 49:355–362

    Article  Google Scholar 

  54. Ricke J, Maass P, Hanninen EL et al. (1998) Wavelet versus JPEG (Joint Photographic Expert Group) and fractal compression. Impact on the detection of low-contrast details in computed radiographs. Invest Radiol 33:456–463

    Article  Google Scholar 

  55. Sasikala M, and Kumaravel N (2000) Optimal autoregressive model based medical image compression using genetic algorithm. Biomed Sci Instrum 36:177–182

    Google Scholar 

  56. Schelkens P, Munteanu A, Barbarien J et al. (2003) Wavelet coding of volumetric medical datasets. IEEE Trans Med Imaging 22:441–458

    Article  Google Scholar 

  57. Sung M, Kim H, Yoo S et al. (2002) Clinical evaluation of compression ratios using JPEG2000 on computed radiography chest images. J Digit Imaging 15:78–83

    Article  Google Scholar 

  58. Suryanarayanan S, Karellas A, Vedantham S et al. (2004) A perceptual evaluation of JPEG2000 image compression for digital mammography : contrast-detail characteristics. J Digit Imaging 16:64–70

    Article  Google Scholar 

  59. Ta S, Wu Y, and Lin C (2000) An adaptive 3-D discrete cosine transform coder for medical image compression. IEEE Trans Inf Technol Biomed 4:259–263

    Article  Google Scholar 

  60. Wei J, Chang C, Chou N et al. (2001) ECG data compression using truncated singular value decomposition. IEEE Trans Inf Tech Biomed 5:290–299

    Article  Google Scholar 

  61. Wu Y (2002) Medical image compression by sampling DCT coefficients. IEEE Trans Inf Technol Biomed 6:86–94

    Article  Google Scholar 

  62. YG Y, and Tai SC (2001) Medical image compression by discrete cosine transform spectral similarity strategy. IEEE Trans Inf Technol Biomed 5:236–243

    Article  Google Scholar 

  63. Zeybek E, Naït-Ali A, Olivier C et al. (2007) A Novel Scheme for joint Multi-channel ECG-ultrasound image compression. IEEE Proceedings of the 29th Annual Int. Conf. of the IEEE EMBS 713–716

    Google Scholar 

  64. Zhang Y, Pham B, and Eckstein M (2004) Automated optimization of JPEG2000 Encoder options based on model observer Performance for detecting variable signals in X-Ray coronary angiograms. IEEE Trans on Med Imag 23:459–474

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Naït-Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Naït-Ali, A., Zeybek, E., Drouot, X. (2009). Introduction to Multimodal Compression of Biomedical Data. In: Naït-Ali, A. (eds) Advanced Biosignal Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89506-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89506-0_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89505-3

  • Online ISBN: 978-3-540-89506-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics