Skip to main content

Fungal Origin of Ergoline Alkaloids Present in Dicotyledonous Plants (Convolvulaceae)

  • Chapter
  • First Online:
Physiology and Genetics

Part of the book series: The Mycota ((MYCOTA,volume 15))

Abstract

Ergoline (i.e. ergot) alkaloids are a group of physiologically active natural products occurring in taxonomically unrelated fungal and plant taxa, Clavicipitaceae and Convolvulaceae. The disjointed occurrence of ergoline alkaloids seems to contradict the paradigm of chemotaxonomy that identical or at least structurally related natural products occur in taxonomically related organisms. This question has now been solved by the observation that some dicotyledonous plants belonging to the family Convolvulaceae (e.g. Ipomoea asarifolia, I. violacea and Turbina corymbosa carry epibiotic fungi. The fungi present on different plant species are not identical albeit taxonomically closely related clavicipitaceous fungi. Thus, the presence of ergoline alkaloids in dicotyledonous plants is not based on their capacity to synthesize ergoline alkaloids but rather on the ability to live in a symbiotic association with ergoline alkaloid producing fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahimsa-Mueller MA, Markert A, Hellwig S, Knoop V, Steiner U, Drewke C, Leistner E (2007) Clavicipitaceous fungi associated with ergoline alkaloid-containing Convolvulaceae. J Nat Prod 70:1955–1960

    Article  CAS  Google Scholar 

  • Amor-Prats D, Harborne JB (1993) New sources of ergoline alkaloids within the genus Ipomoea. Biochem Syst Ecol 21:455–461

    Article  CAS  Google Scholar 

  • Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654

    Article  CAS  PubMed  Google Scholar 

  • Austin DF, Huáman Z (1996) A synopsis of Ipomoea (Convolvulaceae) in the Americas. Taxon 45:3–38

    Article  Google Scholar 

  • Bacon CW, Lyons P (2005) Ecological fitness factors for fungi within the Balansiae and Clavicipiteae. In: Dighton J, White JF Jr, Oudemans P (eds) The fungal community, its organisation and role in the ecosystem, 3rd edn. CRC Taylor and Francis, Boca Raton, pp 519–532

    Chapter  Google Scholar 

  • Bacon CW, White JF Jr (1994) Stains, media, and procedures for analyzing endophytes. In: Bacon CW, White JF Jr (eds) Biotechnology of endophytic fungi of grasses. CRC, Boca Raton, pp 47–58

    Google Scholar 

  • Bacon CW, White JF Jr (2000) Microbial endophytes. Dekker, New York, pp 341–388

    Google Scholar 

  • Bertoni MD, Romero N, Reddy PV, White JF Jr (1997) A hypocralean epibiont on meristems of Baccharis coridifolia. Mycologia 89:375–382

    Article  Google Scholar 

  • Bischoff JF, White JF Jr (2005) Evolutionary development of the Clavicipitaceae. In: Dighton J, White JF Jr, Oudemans P (eds) The fungal community – its organisation and role in the ecosystems, 3rd edn. CRC Taylor and Francis, Boca Raton, pp 505–518

    Google Scholar 

  • Braun U, Romero J, Liddell C, Creamer R (2003) Production of swainsonine by fungal endophytes of locoweed. Mycol Res 107:980–988

    Article  CAS  PubMed  Google Scholar 

  • Brem D, Leuchtmann A (2002) Intraspecific competition of endophyte infected vs uninfected plants in two woodland grass species. Oikos 96:281–290

    Article  Google Scholar 

  • Chang H-T, Cheng Y-H, Wu C-L, Chang S-T, Chang T-T, Su Y-C (2008) Antifungal activity of essential oil and its constituents from Calocedrus macrolepis var. formosana Florin leaf against plant pathogenic fungi. Bioresour Technol 99:6266–6270

    Article  CAS  PubMed  Google Scholar 

  • Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432:829–837

    Article  CAS  PubMed  Google Scholar 

  • Clark CA (1992) Histological evidence that Fusarium lateritium is an exopathogen on sweetpotato with chlorotic leaf distortion. Phytopathology 82:656–663

    Article  Google Scholar 

  • Clark CA (1994) The chlorotic leaf distortion pathogen, Fusarium lateritium, cross protects sweetpotato against Fusarium wilt caused by Fusarium oxysporum f.sp.batatas. Biol Control 4:59–66

    Article  Google Scholar 

  • Clay K, Frentz IC (1993) Balansia pilulaeformis, an epiphytic species. Mycologia 85:527–534

    Article  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  PubMed  Google Scholar 

  • Croteau R, Ketchum REB, Long RM, Kaspera R, Wildung MR (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5:75–97

    Article  CAS  PubMed  Google Scholar 

  • Dobberstein RH, Staba EJ (1969) Ipomoea, Rivea and Argyreia tissue cultures: influence of various chemical factors on indole alkaloid production and growth. Lloydia 32:141–177

    CAS  PubMed  Google Scholar 

  • Eich E (2008) Solanaceae and Convolvulaceae: secondary metabolites – biosynthesis, chemotaxonomy, biological and economic significance (a handbook). Springer, Heidelberg

    Google Scholar 

  • Eisner T (2003) For love of insects. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414

    Article  CAS  PubMed  Google Scholar 

  • Glenn AE, Bacon CW, Price R, Hanlin RT (1996) Molecular phylogeny of Acremonium and its taxonomic implications. Mycologia 88:369–383

    Article  CAS  Google Scholar 

  • Groeger D, Floss HG (1998) Biochemistry of ergot alkaloids – achievements and challenges. In: Cordell GA (ed) The alkaloids: chemistry and biology, vol 50. Academic, New York, pp 171–218

    Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB (2004) Introduction to ecological biochemistry, 4th edn, Academic, London

    Google Scholar 

  • Hofmann A (1961) Die Wirkstoffe der mexikanischen Zauberdroge “Ololuiqui”. Planta Med 9:354–367

    Article  Google Scholar 

  • Hofmann A (2006) LSD – mein Sorgenkind, die Entdeckung einer Wunderdroge. Deutscher Taschenbuchverlag, Munich

    Google Scholar 

  • Hussein YHA (2004) Biochemical analysis of Convolvulaceae plant tissue cultures for the presence of ergoline alkaloids. Dissertation, Zagazig University

    Google Scholar 

  • Hyun J-W, Clark CA (1998) Analysis of Fusarium lateritium using RAPD and rDNA RFLP techniques. Mycol Res 102:1259–1264

    Article  CAS  Google Scholar 

  • Jenett-Siems K, Kaloga M, Eich E (1994) Ergobalansine/ergobalansinine, a proline-free peptide type alkaloid of the fungal genus Balansia is a constituent of Ipomoea piurensis. J Nat Prod 57:1304–1306

    Article  CAS  Google Scholar 

  • Keller U, Tudzynski P (2002) Ergot alkaloids. In: Osiewacz HD (ed) The Mycota, industrial applications, vol X. Springer, Heidelberg, pp 157–181

    Google Scholar 

  • Kucht S, Gross J, Hussein Y, Grothe T, Keller U, Basar S, Koenig WA, Steiner U, Leistner E (2004) Elimination of ergoline alkaloids following treatment of Ipomoea asarifolia (Convolvulaceae) with fungicides. Planta 219:619–625

    Article  CAS  PubMed  Google Scholar 

  • Kuldau GA, Liu JS, White JF Jr, Siegel MR, Schardl CL (1997) Molecular systematics of Clavicipitaceae supporting monophyly of genus Epichloë and form genus Ephelis. Mycologia 89:431–441

    Article  CAS  Google Scholar 

  • Leistner E (2005) Die Biologie der Taxane. Pharm Unserer Zeit 34:98–103

    Article  CAS  PubMed  Google Scholar 

  • Leuchtmann A, Clay K (1988) Atkinsonella hypoxylon and Balansia cyperi, epiphytic members of the Balansiae. Mycologia 80:192–199

    Article  Google Scholar 

  • Leuchtmann A, Clay K (1989) Morphological, cultural and mating studies on Atkinsonella, including A. texensis. Mycologia 81:692–701

    Article  Google Scholar 

  • Lewis EA, Bills GF, Heredia G, Reyes M, Arias RM, White JF Jr (2002) A new species of endophytic balansia from Veracruz, Mexico. Mycologia 94:1066–1070

    Article  PubMed  Google Scholar 

  • Luttrell ES, Bacon CW (1977) Classification of Myriogenospora in the Clacicipitaceae. Can J Bot 55:2090–2097

    Article  Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses. Crop Sci 40:923–940

    Article  CAS  Google Scholar 

  • Markert A, Steffan N, Ploss K, Hellwig S, Steiner U, Drewke C, Li S-M, Boland W, Leistner E (2008) Biosynthesis and accumulation of ergoline alkaloids in a mutualistic association between Ipomoea asarifolia (Convolvulaceae) and a clavicipitalean fungus. Plant Physiol 147:296–305

    Article  CAS  PubMed  Google Scholar 

  • Mothes K (1981) The problem of chemical convergence in secondary metabolism. Sci Scientists 1981:323–326

    Google Scholar 

  • Mothes K, Schütte HR, Luckner M (1985) Biochemistry of alkaloids. VEB, Berlin

    Google Scholar 

  • Moy M, Belanger F, Duncan R, Freehoff A, Leary C, Meyer W, Sullivan R, White JF Jr (2000) Identification of epiphyllous mycelial nets on leaves of grasses infected by clavicipitaceous endophytes. Symbiosis 28:291–302

    Google Scholar 

  • Mucciarelli M, Scannerini S, Bertea CM, Maffei M (2002) An ascomycetous endophyte isolated from Mentha piperita L.: biological features and molecular studies. Mycologia 94:28–39

    Article  PubMed  Google Scholar 

  • Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888

    Article  CAS  PubMed  Google Scholar 

  • Piel J (2004) Metabolites from symbiotic bacteria. Nat Prod Rep 21:519–538

    Article  CAS  PubMed  Google Scholar 

  • Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719

    Article  CAS  PubMed  Google Scholar 

  • Reddy PV, Bergen MS, Patel R, White JF Jr (1998) An examination of molecular phylogeny and morphology of the grass endophyte Balansia claviceps and similar species. Mycologia 90:108–117

    Article  CAS  Google Scholar 

  • Rykard DM, Bacon CW, Luttrell ES (1985) Host relations of Myriogenospora atramentosa and Balansia epichloë (Clavicipitaceae). Phytopathology 75:950–956

    Article  Google Scholar 

  • Saikkonen K, Wäli P, Helander M, Feath SH (2004) Evolution of endophyte-plant symbiosis. Trends Plant Sci 9:275–280

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL (1994) Molecular and genetic methodologies and transformation of grass endophytes. In: Bacon CW, White JF Jr (eds) Biotechnology of endophytic fungi of grasses. CRC Taylor and Francis, Boca Raton, pp 151–166

    Google Scholar 

  • Schardl CL, Craven KD, Speakman S, Stromberg A, Lindstrom A, Yoshida R ( 2008) A novel test for host-symbiotum codivergence indicates ancient origin of fungal endophytes in grasses. Syst Biol 57:483–498

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL, Grossman RB, Nagabhyru P, Faulkner JR, Mallik UP (2007) Loline alkaloids: currencies of mutualism. Phytochemistry 68:980–996

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbiosis of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL, Panaccione DG, Tudzynski P (2006) Ergot alkaloids - biology and molecular biology. In: Cordell GA (ed) The alkaloids: chemistry and biology, vol 63. Academic, New York, pp 45–86

    Chapter  Google Scholar 

  • Schnee C, Köllner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103:1129–1134

    Article  CAS  PubMed  Google Scholar 

  • Smith KT, Bacon CW, Luttrell ES (1985) Reciprocal translocation of carbohydrates between host and fungus in Bahiagrass infected with Myriogenospora atramentosa. Phytopathology 75:407–411

    Article  CAS  Google Scholar 

  • Spatafora JW, Blackwell M (1993) Molecular systematics of unitunicate perithecial ascomycetes: the Clavicipitales–Hypocreales connection. Mycologia 85:912–922

    Article  CAS  Google Scholar 

  • Steiner U, Ahimsa-Mueller MA, Markert A, Kucht S, Gross J, Kauf N, Kuzma M, Zych M, Lamshoeft M, Furmanowa M, Knoop V, Drewke C, Leistner E (2006) Molecular characterisation of a seed transmitted clavicipitaceous fungus occurring on dicotyledonous plants (Convolvulaceae). Planta 224:533–544

    Article  CAS  PubMed  Google Scholar 

  • Steiner U, Hellwig S, Leistner E (2008) Specificity in the interaction between an epibiotic clavicipitalean fungus and its convolvulaceous host in a fungus/plant symbiotum. Plant Signal Behav 3:704–706

    PubMed  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  CAS  PubMed  Google Scholar 

  • Sullivan RF, Bills GF, Hywel-Jones NL, White JF Jr (2000) Hyperdermium: a new clavicipitalean genus for some tropical epibionts of dicotyledonous plants. Mycologia 92:908–918

    Article  Google Scholar 

  • Sung GH, Sung JM, Hywel-Jones NL, Spatafora JW (2007) A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Mol Phyl Evol 44:1204–1223

    Article  CAS  Google Scholar 

  • Tsai H-F, Liu J-S, Staben C, Christensen MJ, Latch CM, Siegel MR, Schardl CL (1994) Evolutionary diversification of fungal endophytes of tall fescue grass by hybridisation with Epichloë species. Proc Natl Acad Sci USA 91:2542–2546

    Article  CAS  PubMed  Google Scholar 

  • Tudzynski P, Correia T, Keller U (2001) Biotechnology and genetics of ergot alkaloids. Appl Microbiol Biotechnol 57:593–605

    Article  CAS  PubMed  Google Scholar 

  • Unsöld IA, Li S-M (2005) Overproduction, purification and characterization of FgaPT2, a dimethylallyltryptophan synthase from Aspergillus fumigatus. Microbiology 151:1499–1505

    Article  PubMed  Google Scholar 

  • Welty RE, Azevedo MD, Cooper TM (1987) Influence of moisture content, temperature, and length of storage on seed germination and survival of endophytic fungi in seeds of tall fescue and perennial ryegrass. Phytopathology 77:893–900

    Article  Google Scholar 

  • White JF Jr, Morgan-Jones G (1996) Morphological and physiological adaptations of Balansieae and trends in the evolution of grass endophytes. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants, APS, St. Paul, pp 133–154

    Google Scholar 

  • White JF Jr, Bacon CW, Hinton DM (1991) Substrate utilization in selected Acremonium, Atkinosella, and Balansia species. Mycologia 83:601–610

    Article  CAS  Google Scholar 

  • White JF Jr, Bacon CW, Hywel-Jones NL, Spatafora JW (2003) Clavicipitalean fungi, evolutionary biology, chemistry, biocontrol, and cultural impacts. Mycology series, vol 19, Dekker, New York

    Book  Google Scholar 

  • Zenk MH (1967) Biochemie und Physiologie sekundärer Pflanzenstoffe. Ber Dtsch Bot Ges 80:573–591

    CAS  Google Scholar 

  • Zhang L, Guo B, Li H, Zeng S, Shao H, Gu S, Wei R (2000) Zhongcaoyao 31:805–807

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eckhard Leistner or Ulrike Steiner .

Editor information

Editors and Affiliations

Additional information

Dedicated to Prof. Dr. Detlef Gröger on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leistner, E., Steiner, U. (2009). Fungal Origin of Ergoline Alkaloids Present in Dicotyledonous Plants (Convolvulaceae). In: Anke, T., Weber, D. (eds) Physiology and Genetics. The Mycota, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00286-1_9

Download citation

Publish with us

Policies and ethics