Skip to main content

Passive and Active Drug Targeting: Drug Delivery to Tumors as an Example

  • Chapter
  • First Online:
Drug Delivery

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 197))

Abstract

The paradigm of using nanoparticulate pharmaceutical carriers has been well established over the past decade, both in pharmaceutical research and in the clinical setting. Drug carriers are expected to stay in the blood for long time, accumulate in pathological sites with affected and leaky vasculature (tumors, inflammations, and infarcted areas) via the enhanced permeability and retention (EPR) effect, and facilitate targeted delivery of specific ligand-modified drugs and drug carriers into poorly accessible areas. Among various approaches to specifically target drug-loaded carrier systems to required pathological sites in the body, two seem to be most advanced – passive (EPR effect-mediated) targeting, based on the longevity of the pharmaceutical carrier in the blood and its accumulation in pathological sites with compromised vasculature, and active targeting, based on the attachment of specific ligands to the surface of pharmaceutical carriers to recognize and bind pathological cells. Here, we will consider and discuss these two targeting approaches using tumor targeting as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abra RM, Bankert RB, Chen F, Egilmez NK, Huang K, Saville R, Slater JL, Sugano M, Yokota SJ (2002) The next generation of liposome delivery systems: recent experience with tumor-targeted, sterically-stabilized immunoliposomes and active-loading gradients. J Liposome Res 12:1–3

    CAS  PubMed  Google Scholar 

  • Adams ML, Lavasanifar A, Kwon GS (2003) Amphiphilic block copolymers for drug delivery. J Pharm Sci 92:1343–1355

    CAS  PubMed  Google Scholar 

  • Aliabadi HM, Lavasanifar A (2006) Polymeric micelles for drug delivery. Expert Opin Drug Deliv 3:139–162

    CAS  PubMed  Google Scholar 

  • Allen C, Yu Y, Maysinger D, Eisenberg A (1998) Polycaprolactone-b-poly(ethylene oxide) block copolymer micelles as a novel drug delivery vehicle for neurotrophic agents FK506 and L-685,818. Bioconjug Chem 9:564–572

    CAS  PubMed  Google Scholar 

  • Allen TM (1994) The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system. Adv Drug Deliv Rev 13:285–309

    CAS  Google Scholar 

  • Allen TM, Brandeis E, Hansen CB, Kao GY, Zalipsky S (1995a) A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in efficient targeting to cancer cells. Biochim Biophys Acta 1237:99–108

    PubMed  Google Scholar 

  • Allen TM, Hansen C (1991) Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta 1068:133–141

    CAS  PubMed  Google Scholar 

  • Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A (1991) Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1066:29–36

    CAS  PubMed  Google Scholar 

  • Allen TM, Hansen C, Rutledge J (1989) Liposomes with prolonged circulation times: factors affecting uptake by reticuloendothelial and other tissues. Biochim Biophys Acta 981:27–35

    CAS  PubMed  Google Scholar 

  • Allen TM, Hansen CB, de Menezes DEL (1995b) Pharmacokinetics of long-circulating liposomes. Adv Drug Deliv Rev 16:267–284

    CAS  Google Scholar 

  • Allen TM, Mehra T, Hansen C, Chin YC (1992) Stealth liposomes: an improved sustained release system for 1-beta-D-arabinofuranosylcytosine. Cancer Res 52:2431–2439

    CAS  PubMed  Google Scholar 

  • Allen TM, Mumbengegwi DR, Charrois GJ (2005) Anti-CD19-targeted liposomal doxorubicin improves the therapeutic efficacy in murine B-cell lymphoma and ameliorates the toxicity of liposomes with varying drug release rates. Clin Cancer Res 11:3567–3573

    CAS  PubMed  Google Scholar 

  • Alonso MJ (2004) Nanomedicines for overcoming biological barriers. Biomed Pharmacother 58:168–172

    PubMed  Google Scholar 

  • Asai T, Shimizu K, Kondo M, Kuromi K, Watanabe K, Ogino K, Taki T, Shuto S, Matsuda A, Oku N (2002) Anti-neovascular therapy by liposomal DPP-CNDAC targeted to angiogenic vessels. FEBS Lett 520:167–170

    CAS  PubMed  Google Scholar 

  • Asgeirsdottir SA, Zwiers PJ, Morselt HW, Moorlag HE, Bakker HI, Heeringa P, Kok JW, Kallenberg CG, Molema G, Kamps JA (2008) Inhibition of proinflammatory genes in anti-GBM glomerulonephritis by targeted dexamethasone-loaded AbEsel liposomes. Am J Physiol Renal Physiol 294:F554–F561

    CAS  PubMed  Google Scholar 

  • Asokan A, Cho MJ (2003) Cytosolic delivery of macromolecules II. Mechanistic studies with pH-sensitive morpholine lipids. Biochim Biophys Acta 1611:151–160

    CAS  PubMed  Google Scholar 

  • Atobe K, Ishida T, Ishida E, Hashimoto K, Kobayashi H, Yasuda J, Aoki T, Obata K, Kikuchi H, Akita H, Asai T, Harashima H, Oku N, Kiwada H (2007) In vitro efficacy of a sterically stabilized immunoliposomes targeted to membrane type 1 matrix metalloproteinase (MT1-MMP). Biol Pharm Bull 30:972–978

    CAS  PubMed  Google Scholar 

  • Attwood D, Florence AT (1983) Surfactant systems: their chemistry, pharmacy, and biology. Chapman and Hall, London, p 794

    Google Scholar 

  • Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K (2005) Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem 16:122–130

    CAS  PubMed  Google Scholar 

  • Baum P, Muller D, Ruger R, Kontermann RE (2007) Single-chain Fv immunoliposomes for the targeting of fibroblast activation protein-expressing tumor stromal cells. J Drug Target 15:399–406

    CAS  PubMed  Google Scholar 

  • Beduneau A, Saulnier P, Hindre F, Clavreul A, Leroux JC, Benoit JP (2007) Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab' fragments. Biomaterials 28:4978–4990

    CAS  PubMed  Google Scholar 

  • Blume G, Cevc G, Crommelin MD, Bakker-Woudenberg IA, Kluft C, Storm G (1993) Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times. Biochim Biophys Acta 1149:180–184

    CAS  PubMed  Google Scholar 

  • Bogdanov AA Jr, Klibanov AL, Torchilin VP (1988) Protein immobilization on the surface of liposomes via carbodiimide activation in the presence of N-hydroxysulfosuccinimide. FEBS Lett 231:381–384

    CAS  PubMed  Google Scholar 

  • Boman NL, Masin D, Mayer LD, Cullis PR, Bally MB (1994) Liposomal vincristine which exhibits increased drug retention and increased circulation longevity cures mice bearing P388 tumors. Cancer Res 54:2830–2833

    CAS  PubMed  Google Scholar 

  • Boomer JA, Thompson DH (1999) Synthesis of acid-labile diplasmenyl lipids for drug and gene delivery applications. Chem Phys Lipids 99:145–153

    CAS  PubMed  Google Scholar 

  • Brignole C, Marimpietri D, Gambini C, Allen TM, Ponzoni M, Pastorino F (2003) Development of Fab' fragments of anti-GD(2) immunoliposomes entrapping doxorubicin for experimental therapy of human neuroblastoma. Cancer Lett 197:199–204

    CAS  PubMed  Google Scholar 

  • Budker V, Gurevich V, Hagstrom JE, Bortzov F, Wolff JA (1996) pH-sensitive, cationic liposomes: a new synthetic virus-like vector. Nat Biotechnol 14:760–764

    CAS  PubMed  Google Scholar 

  • Cammas S, Suzuki K, Sone C, Sakurai Y, Kataoka K, Okano T (1997) Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers. J Control Release 48:157–164

    CAS  Google Scholar 

  • Chazov EI, Alexeev AV, Antonov AS, Koteliansky VE, Leytin VL, Lyubimova EV, Repin VS, Sviridov DD, Torchilin VP, Smirnov VN (1981) Endothelial cell culture on fibrillar collagen: model to study platelet adhesion and liposome targeting to intercellular collagen matrix. Proc Natl Acad Sci USA 78:5603–5607

    CAS  PubMed  Google Scholar 

  • Chazov EI, Matveeva LS, Mazaev AV, Sargin KE, Sadovskaia GV, Ruda MI (1976) Intracoronary administration of fibrinolysin in acute myocardial infarct. Ter Arkh 48:8–19

    CAS  PubMed  Google Scholar 

  • Chekhonin VP, Kabanov AV, Zhirkov YA, Morozov GV (1991) Fatty acid acylated Fab-fragments of antibodies to neurospecific proteins as carriers for neuroleptic targeted delivery in brain. FEBS Lett 287:149–152

    CAS  PubMed  Google Scholar 

  • Cheng WW, Allen TM (2008) Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: a comparison of whole monoclonal antibody, Fab' fragments and single chain Fv. J Control Release 126:50–58

    CAS  Google Scholar 

  • Cheng WW, Das D, Suresh M, Allen TM (2007) Expression and purification of two anti-CD19 single chain Fv fragments for targeting of liposomes to CD19-expressing cells. Biochim Biophys Acta 1768:21–29

    CAS  PubMed  Google Scholar 

  • Cheung CY, Murthy N, Stayton PS, Hoffman AS (2001) A pH-sensitive polymer that enhances cationic lipid-mediated gene transfer. Bioconjug Chem 12:906–910

    CAS  PubMed  Google Scholar 

  • Chonn A, Semple SC, Cullis PR (1991) Separation of large unilamellar liposomes from blood components by a spin column procedure: towards identifying plasma proteins which mediate liposome clearance in vivo. Biochim Biophys Acta 1070:215–222

    CAS  PubMed  Google Scholar 

  • Chonn A, Semple SC, Cullis PR (1992) Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. J Biol Chem 267:18759–18765

    CAS  PubMed  Google Scholar 

  • Chung JE, Yokoyama M, Aoyagi T, Sakurai Y, Okano T (1998) Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J Control Release 53:119–130

    CAS  Google Scholar 

  • Chung JE, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T (1999) Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J Control Release 62:115–127

    CAS  Google Scholar 

  • Cohen S, Bernstein H (1996) Microparticulate systems for the delivery of proteins and vaccines. Drugs and the pharmaceutical sciences, Vol 77. Marcel Dekker, New York, p 525

    Google Scholar 

  • Connor J, Huang L (1986) pH-sensitive immunoliposomes as an efficient and target-specific carrier for antitumor drugs. Cancer Res 46:3431–3435

    CAS  PubMed  Google Scholar 

  • Dagar S, Krishnadas A, Rubinstein I, Blend MJ, Onyuksel H (2003) VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: in vivo studies. J Control Release 91:123–133

    CAS  Google Scholar 

  • Danson S, Ferry D, Alakhov V, Margison J, Kerr D, Jowle D, Brampton M, Halbert G, Ranson M (2004) Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer 90:2085–2091

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dash PR, Read ML, Fisher KD, Howard KA, Wolfert M, Oupicky D, Subr V, Strohalm J, Ulbrich K, Seymour LW (2000) Decreased binding to proteins and cells of polymeric gene delivery vectors surface modified with a multivalent hydrophilic polymer and retargeting through attachment of transferrin. J Biol Chem 275:3793–3802

    CAS  PubMed  Google Scholar 

  • Derycke AS, De Witte PA (2002) Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-liposomes. Int J Oncol 20:181–187

    CAS  PubMed  Google Scholar 

  • Ding L, Samuel J, MacLean GD, Noujaim AA, Diener E, Longenecker BM (1990) Effective drug-antibody targeting using a novel monoclonal antibody against the proliferative compartment of mammalian squamous carcinomas. Cancer Immunol Immunother 32:105–109

    CAS  PubMed  Google Scholar 

  • Drummond DC, Hong K, Park JW, Benz CC, Kirpotin DB (2000) Liposome targeting to tumors using vitamin and growth factor receptors. Vitam Horm 60:285–332

    CAS  PubMed  Google Scholar 

  • Dunnick JK, McDougall IR, Aragon S, Goris ML, Kriss JP (1975) Vesicle interactions with polyamino acids and antibody: in vitro and in vivo studies. J Nucl Med 16:483–487

    CAS  PubMed  Google Scholar 

  • Eavarone DA, Yu X, Bellamkonda RV (2000) Targeted drug delivery to C6 glioma by transferrin-coupled liposomes. J Biomed Mater Res 51:10–14

    CAS  PubMed  Google Scholar 

  • Elbayoumi TA, Torchilin VP (2006) Enhanced accumulation of long-circulating liposomes modified with the nucleosome-specific monoclonal antibody 2C5 in various tumours in mice: gamma-imaging studies. Eur J Nucl Med Mol Imaging 33:1196–1205

    CAS  PubMed  Google Scholar 

  • Elbayoumi TA, Torchilin VP (2007) Enhanced cytotoxicity of monoclonal anticancer antibody 2C5-modified doxorubicin-loaded PEGylated liposomes against various tumor cell lines. Eur J Pharm Sci 32:159–168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elbayoumi TA, Torchilin VP (2008) Tumor-specific antibody-mediated targeted delivery of Doxil® reduces the manifestation of auricular erythema side effect in mice. Int J Pharm 357:272–279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ewer MS, Martin FJ, Henderson C, Shapiro CL, Benjamin RS, Gabizon AA (2004) Cardiac safety of liposomal anthracyclines. Semin Oncol 31:161–181

    CAS  PubMed  Google Scholar 

  • Fattal E, Couvreur P, Dubernet C (2004) “Smart” delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Adv Drug Deliv Rev 56:931–946

    CAS  PubMed  Google Scholar 

  • Flavell DJ, Noss A, Pulford KA, Ling N, Flavell SU (1997) Systemic therapy with 3BIT, a triple combination cocktail of anti-CD19, -CD22, and -CD38-saporin immunotoxins, is curative of human B-cell lymphoma in severe combined immunodeficient mice. Cancer Res 57: 4824–4829

    CAS  PubMed  Google Scholar 

  • Francis GE, Delgado C (2000) Drug targeting: strategies, principles, and applications. Humana Press, Totowa, N.J

    Google Scholar 

  • Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, Martin F, Huang A, Barenholz Y (1994) Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 54:987–992

    CAS  PubMed  Google Scholar 

  • Gabizon A, Papahadjopoulos D (1988) Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci USA 85:6949–6953

    CAS  PubMed  Google Scholar 

  • Gabizon A, Papahadjopoulos D (1992) The role of surface charge and hydrophilic groups on liposome clearance in vivo. Biochim Biophys Acta 1103:94–100

    CAS  PubMed  Google Scholar 

  • Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S (2004) Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev 56:1177–1192

    CAS  PubMed  Google Scholar 

  • Gabizon AA (1992) Selective tumor localization and improved therapeutic index of anthracyclines encapsulated in long-circulating liposomes. Cancer Res 52:891–896

    CAS  PubMed  Google Scholar 

  • Gabizon AA (1995) Liposome circulation time and tumor targeting: implications for cancer chemotherapy. Adv Drug Deliv Rev 16:285–294

    CAS  Google Scholar 

  • Gabizon AA (2001) Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Invest 19:424–436

    CAS  PubMed  Google Scholar 

  • Gao Z, Eisenberg AA (1993) A model of micellization for block copolymers in solution. Macromolecules 26:7353–7360

    CAS  Google Scholar 

  • Gao Z, Lukyanov AN, Chakilam AR, Torchilin VP (2003) PEG-PE/phosphatidylcholine mixed immunomicelles specifically deliver encapsulated taxol to tumor cells of different origin and promote their efficient killing. J Drug Target 11:87–92

    CAS  PubMed  Google Scholar 

  • Gijsens A, Derycke A, Missiaen L, De Vos D, Huwyler J, Eberle A, de Witte P (2002) Targeting of the photocytotoxic compound AlPcS4 to Hela cells by transferrin conjugated PEG-liposomes. Int J Cancer 101:78–85

    CAS  PubMed  Google Scholar 

  • Goldmacher VS, Blatter WA, Lambert JM, Chari RVJ (2002) Immunotoxins and antibody-drug conjugates for cancer treatment. In: Muzykantov V, Torchilin VP (eds) Biomedical aspects of drug targeting. Kluwer, Dordrecht, pp 291–309

    Google Scholar 

  • Goncalves A, Braud AC, Viret F, Genre D, Gravis G, Tarpin C, Giovannini M, Maraninchi D, Viens P (2003) Phase I study of pegylated liposomal doxorubicin (Caelyx) in combination with carboplatin in patients with advanced solid tumors. Anticancer Res 23:3543–3548

    CAS  PubMed  Google Scholar 

  • Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    CAS  PubMed  Google Scholar 

  • Gregoriadis G (1977) Targeting of drugs. Nature 265:407–411

    CAS  PubMed  Google Scholar 

  • Gregoriadis G (1988) Liposomes as drug carriers: recent trends and progress. Wiley, New York, p 910

    Google Scholar 

  • Gregoriadis G (1993) Liposome technology, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Gregoriadis G (2007) Liposome technology: liposome preparation and related techniques, 3rd edn, Vol 1. Taylor & Francis, London, UK, p 352

    Google Scholar 

  • Guo X, Szoka FC Jr (2001) Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG-diortho ester-lipid conjugate. Bioconjugate Chem 12:291–300

    CAS  Google Scholar 

  • Gupta B, Torchilin VP (2007) Monoclonal antibody 2C5-modified doxorubicin-loaded liposomes with significantly enhanced therapeutic activity against intracranial human brain U-87 MG tumor xenografts in nude mice. Cancer Immunol Immunother 56:1215–1223

    CAS  PubMed  Google Scholar 

  • Gupta Y, Jain A, Jain P, Jain SK (2007) Design and development of folate appended liposomes for enhanced delivery of 5-FU to tumor cells. J Drug Target 15:231–240

    CAS  PubMed  Google Scholar 

  • Haber E (1994) Antibody targeting as a strategy in thrombolysis. In: Khaw BA, Narula J, Strauss HW (eds) Monoclonal antibodies in cardiovascular diseases. Lea & Febiger, Malvern, pp 187–197

    Google Scholar 

  • Hafez IM, Maurer N, Cullis PR (2001) On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther 8:1188–1196

    CAS  PubMed  Google Scholar 

  • Hagan SA, Coombes AGA, Garnett MC, Dunn SE, Davies MC, Illum L, Davis SS (1996) Polylactide-poly(ethylene glycol) copolymers as drug delivery systems 1. Characterization of water dispersible micelle-forming systems. Langmuir 12:2153–2161

    CAS  Google Scholar 

  • Hamaguchi T, Matsumura Y, Suzuki M, Shimizu K, Goda R, Nakamura I, Nakatomi I, Yokoyama M, Kataoka K, Kakizoe T (2005) NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer 92:1240–1246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harada A, Kataoka K (1998) Novel polyion complex micelles entrapping enzyme molecules in the core: preparation of narrowly-distributed micelles from lysozyme and poly(ethylene glycol)-poly(aspartic acid) block copolymer in aqueous medium. Macromolecules 31:288–294

    CAS  Google Scholar 

  • Harrington KJ, Lewanski C, Northcote AD, Whittaker J, Peters AM, Vile RG, Stewart JS (2001) Phase II study of pegylated liposomal doxorubicin (Caelyx) as induction chemotherapy for patients with squamous cell cancer of the head and neck. Eur J Cancer 37:2015–2022

    CAS  PubMed  Google Scholar 

  • Hashida M, Nishikawa M, Yamashita F, Takakura Y (2001) Cell-specific delivery of genes with glycosylated carriers. Adv Drug Deliv Rev 52:187–196

    CAS  PubMed  Google Scholar 

  • Hatakeyama H, Akita H, Ishida E, Hashimoto K, Kobayashi H, Aoki T, Yasuda J, Obata K, Kikuchi H, Ishida T, Kiwada H, Harashima H (2007) Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int J Pharm 342:194–200

    CAS  PubMed  Google Scholar 

  • Hatakeyama H, Akita H, Maruyama K, Suhara T, Harashima H (2004) Factors governing the in vivo tissue uptake of transferrin-coupled polyethylene glycol liposomes in vivo. Int J Pharm 281:25–33

    CAS  PubMed  Google Scholar 

  • Heath TD, Robertson D, Birbeck MS, Davies AJ (1980) Covalent attachment of horseradish peroxidase to the outer surface of liposomes. Biochim Biophys Acta 599:42–62

    CAS  PubMed  Google Scholar 

  • Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3:177–182

    CAS  PubMed  Google Scholar 

  • Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95:4607–4612

    CAS  PubMed  Google Scholar 

  • Hosokawa S, Tagawa T, Niki H, Hirakawa Y, Nohga K, Nagaike K (2003) Efficacy of immunoliposomes on cancer models in a cell-surface-antigen-density-dependent manner. Br J Cancer 89:1545–1551

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang SK, Mayhew E, Gilani S, Lasic DD, Martin FJ, Papahadjopoulos D (1992) Pharmacokinetics and therapeutics of sterically stabilized liposomes in mice bearing C-26 colon carcinoma. Cancer Res 52:6774–6781

    CAS  PubMed  Google Scholar 

  • Huang SK, Stauffer PR, Hong K, Guo JW, Phillips TL, Huang A, Papahadjopoulos D (1994) Liposomes and hyperthermia in mice: increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes. Cancer Res 54:2186–2191

    CAS  PubMed  Google Scholar 

  • Hunter RJ (1991) Foundations of colloid science. Oxford University Press, New York

    Google Scholar 

  • Hussain S, Pluckthun A, Allen TM, Zangemeister-Wittke U (2007) Antitumor activity of an epithelial cell adhesion molecule targeted nanovesicular drug delivery system. Mol Cancer Ther 6:3019–3027

    CAS  PubMed  Google Scholar 

  • Huwyler J, Wu D, Pardridge WM (1996) Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA 93:14164–14169

    CAS  PubMed  Google Scholar 

  • Hwang KJ (1987) Liposome pharmacokinetics. In: Ostro MJ (ed) Liposomes: from biophysics to therapeutics. Dekker, New York, pp 109–156

    Google Scholar 

  • Iakoubov L, Mongayt D, Torchilin VP (1995a) Monoclonal anti-nuclear autoantibody from the aged effectively suppresses tumor development in vivo. Cancer Biother Radiopharm 8:299–310

    CAS  Google Scholar 

  • Iakoubov L, Rokhlin O, Torchilin V (1995b) Anti-nuclear autoantibodies of the aged reactive against the surface of tumor but not normal cells. Immunol Lett 47:147–149

    CAS  PubMed  Google Scholar 

  • Iakoubov LZ, Torchilin VP (1997) A novel class of antitumor antibodies: nucleosome-restricted antinuclear autoantibodies (ANA) from healthy aged nonautoimmune mice. Oncol Res 9: 439–446

    CAS  PubMed  Google Scholar 

  • Iakoubov LZ, Torchilin VP (1998) Nucleosome-releasing treatment makes surviving tumor cells better targets for nucleosome-specific anticancer antibodies. Cancer Detect Prev 22:470–475

    CAS  PubMed  Google Scholar 

  • Iinuma H, Maruyama K, Okinaga K, Sasaki K, Sekine T, Ishida O, Ogiwara N, Johkura K, Yonemura Y (2002) Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int J Cancer 99:130–137

    CAS  PubMed  Google Scholar 

  • Imura Y, Stassen JM, Kurokawa T, Iwasa S, Lijnen HR, Collen D (1992) Thrombolytic and pharmacokinetic properties of an immunoconjugate of single-chain urokinase-type plasminogen activator (u-PA) and a bispecific monoclonal antibody against fibrin and against u-PA in baboons. Blood 79:2322–2329

    CAS  PubMed  Google Scholar 

  • Ishida O, Maruyama K, Tanahashi H, Iwatsuru M, Sasaki K, Eriguchi M, Yanagie H (2001) Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm Res 18:1042–1048

    CAS  PubMed  Google Scholar 

  • Ishida T, Iden DL, Allen TM (1999) A combinatorial approach to producing sterically stabilized (Stealth) immunoliposomal drugs. FEBS Lett 460:129–133

    CAS  PubMed  Google Scholar 

  • Jain RK (1999) Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 1:241–263

    CAS  PubMed  Google Scholar 

  • Jeong JH, Kim SW, Park TG (2003) Novel intracellular delivery system of antisense oligonucleotide by self-assembled hybrid micelles composed of DNA/PEG conjugate and cationic fusogenic peptide. Bioconjug Chem 14:473–479

    CAS  PubMed  Google Scholar 

  • Jeong YI, Cheon JB, Kim SH, Nah JW, Lee YM, Sung YK, Akaike T, Cho CS (1998) Clonazepam release from core-shell type nanoparticles in vitro. J Control Release 51:169–178

    CAS  Google Scholar 

  • Johnston SR, Gore ME (2001) Caelyx: phase II studies in ovarian cancer. Eur J Cancer 37(Suppl 9):S8–S14

    CAS  PubMed  Google Scholar 

  • Jones M, Leroux J (1999) Polymeric micelles – a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48:101–111

    CAS  PubMed  Google Scholar 

  • Jones MC, Ranger M, Leroux JC (2003) pH-sensitive unimolecular polymeric micelles: synthesis of a novel drug carrier. Bioconjug Chem 14:774–781

    CAS  PubMed  Google Scholar 

  • Joshee N, Bastola DR, Cheng PW (2002) Transferrin-facilitated lipofection gene delivery strategy: characterization of the transfection complexes and intracellular trafficking. Hum Gene Ther 13:1991–2004

    CAS  PubMed  Google Scholar 

  • Jule E, Nagasaki Y, Kataoka K (2003) Lactose-installed poly(ethylene glycol)-poly(d,l-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study. Bioconjug Chem 14:177–186

    CAS  PubMed  Google Scholar 

  • Kabanov AV, Batrakova EV, Alakhov VY (2002a) Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 82:189–212

    CAS  Google Scholar 

  • Kabanov AV, Batrakova EV, Melik-Nubarov NS, Fedoseev NA, Dorodnich TY, Alakhov VY, Chekhonin VP, Nazarova IR, Kabanov VA (1992) A new class of drug carriers: micelles of poly(oxyethylene)-poly(oxypropylene) block copolymer as microcontainers for drug targeting from blood in brain. J Control Release 22:141–157

    CAS  Google Scholar 

  • Kabanov AV, Chekhonin VP, Alakhov V, Batrakova EV, Lebedev AS, Melik-Nubarov NS, Arzhakov SA, Levashov AV, Morozov GV, Severin ES et al (1989) The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles. Micelles as microcontainers for drug targeting. FEBS Lett 258:343–345

    CAS  PubMed  Google Scholar 

  • Kabanov AV, Lemieux P, Vinogradov S, Alakhov V (2002b) Pluronic block copolymers: novel functional molecules for gene therapy. Adv Drug Deliv Rev 54:223–233

    CAS  PubMed  Google Scholar 

  • Kakizawa Y, Kataoka K (2002) Block copolymer micelles for delivery of gene and related compounds. Adv Drug Deliv Rev 54:203–222

    CAS  PubMed  Google Scholar 

  • Kale AA, Torchilin VP (2007) Design, synthesis, and characterization of pH-sensitive PEG-PE conjugates for stimuli-sensitive pharmaceutical nanocarriers: the effect of substitutes at the hydrazone linkage on the pH stability of PEG-PE conjugates. Bioconjug Chem 18:363–370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kamps JA, Koning GA, Velinova MJ, Morselt HW, Wilkens M, Gorter A, Donga J, Scherphof GL (2000) Uptake of long-circulating immunoliposomes, directed against colon adenocarcinoma cells, by liver metastases of colon cancer. J Drug Target 8:235–245

    CAS  PubMed  Google Scholar 

  • Kamps JA, Scherphof GL (1998) Receptor versus non-receptor mediated clearance of liposomes. Adv Drug Deliv Rev 32:81–97

    PubMed  Google Scholar 

  • Kang N, Perron ME, Prud'homme RE, Zhang Y, Gaucher G, Leroux JC (2005) Stereocomplex block copolymer micelles: core-shell nanostructures with enhanced stability. Nano Lett 5:315–319

    CAS  PubMed  Google Scholar 

  • Katayose S, Kataoka K (1998) Remarkable increase in nuclease resistance of plasmid DNA through supramolecular assembly with poly(ethylene glycol)-poly(L-lysine) block copolymer. J Pharm Sci 87:160–163

    CAS  PubMed  Google Scholar 

  • Khaw BA (2002) Targeting the pathological myocardium. In: Muzykantov V, Torchilin VP (eds) Biomedical aspects of drug targeting. Kluwer, Dordrecht, pp 47–67

    Google Scholar 

  • Khaw BA, daSilva J, Vural I, Narula J, Torchilin VP (2001) Intracytoplasmic gene delivery for in vitro transfection with cytoskeleton-specific immunoliposomes. J Control Release 75:199–210

    CAS  Google Scholar 

  • Khaw BA, Torchilin VP, Vural I, Narula J (1995) Plug and seal: prevention of hypoxic cardiocyte death by sealing membrane lesions with antimyosin-liposomes. Nat Med 1:1195–1198

    CAS  PubMed  Google Scholar 

  • Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, Kim NK, Bang YJ (2004) Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 10:3708–3716

    CAS  PubMed  Google Scholar 

  • Kirpotin D, Park JW, Hong K, Zalipsky S, Li WL, Carter P, Benz CC, Papahadjopoulos D (1997) Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry 36:66–75

    CAS  PubMed  Google Scholar 

  • Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB, Marks JD, Benz CC, Park JW (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66:6732–6740

    CAS  PubMed  Google Scholar 

  • Klibanov AL, Maruyama K, Beckerleg AM, Torchilin VP, Huang L (1991) Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target. Biochim Biophys Acta 1062:142–148

    CAS  PubMed  Google Scholar 

  • Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268:235–237

    CAS  PubMed  Google Scholar 

  • Klibanov AL, Muzykantov VR, Ivanov NN, Torchilin VP (1985) Evaluation of quantitative parameters of the interaction of antibody-bearing liposomes with target antigens. Anal Biochem 150:251–257

    CAS  PubMed  Google Scholar 

  • Klibanov AL, Torchilin VP, Zalipsky S (2003) Long-circulating sterically protected liposomes. In: Torchilin VP, Weissig V (eds) Liposomes: a practical approach, 2nd edn. Oxford; New York, Oxford University Press, pp 231–265

    Google Scholar 

  • Kohori F, Sakai K, Aoyagi T, Yokoyama M, Sakurai Y, Okano T (1998) Preparation and characterization of thermally responsive block copolymer micelles comprising poly(N-isopropylacrylamide-b-DL-lactide). J Control Release 55:87–98

    CAS  Google Scholar 

  • Koning GA, Kamps JA, Scherphof GL (2002) Efficient intracellular delivery of 5-fluorodeoxyuridine into colon cancer cells by targeted immunoliposomes. Cancer Detect Prev 26:299–307

    CAS  PubMed  Google Scholar 

  • Koning GA, Morselt HW, Velinova MJ, Donga J, Gorter A, Allen TM, Zalipsky S, Kamps JA, Scherphof GL (1999) Selective transfer of a lipophilic prodrug of 5-fluorodeoxyuridine from immunoliposomes to colon cancer cells. Biochim Biophys Acta 1420:153–167

    CAS  PubMed  Google Scholar 

  • Kontermann RE (2006) Immunoliposomes for cancer therapy. Curr Opin Mol Ther 8:39–45

    CAS  PubMed  Google Scholar 

  • Kratz F, Beyer U, Schutte MT (1999) Drug-polymer conjugates containing acid-cleavable bonds. Crit Rev Ther Drug Carrier Syst 16:245–288

    CAS  PubMed  Google Scholar 

  • Kubota T, Yamamoto T, Takahara T, Furukawa T, Ishibiki K, Kitajima M, Shida Y, Nakatsubo H (1992) Targeting cancer chemotherapy using a monoclonal antibody (NCC-LU-243) conjugated with mitomycin C. J Surg Oncol 51:75–80

    CAS  PubMed  Google Scholar 

  • Kung VT, Redemann CT (1986) Synthesis of carboxyacyl derivatives of phosphatidylethanolamine and use as an efficient method for conjugation of protein to liposomes. Biochim Biophys Acta 862:435–439

    CAS  PubMed  Google Scholar 

  • Kwon GS (1998) Diblock copolymer nanoparticles for drug delivery. Crit Rev Ther Drug Carrier Syst 15:481–512

    CAS  PubMed  Google Scholar 

  • Kwon GS (2003) Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst 20:357–403

    CAS  PubMed  Google Scholar 

  • Kwon GS, Kataoka K (1995) Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev 16:295–309

    CAS  Google Scholar 

  • Kwon GS, Kataoka K (1999) Block copolymer micelles as long-circulating drug vehicles. Adv Drug Delivery Rev 16:295–309

    Google Scholar 

  • Kwon GS, Okano T (1999) Soluble self-assembled block copolymers for drug delivery. Pharm Res 16:597–600

    CAS  PubMed  Google Scholar 

  • La SB, Okano T, Kataoka K (1996) Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(beta-benzyl L-aspartate) block copolymer micelles. J Pharm Sci 85:85–90

    CAS  PubMed  Google Scholar 

  • Lasic DD (1992) Mixed micelles in drug delivery. Nature 355:279–280

    CAS  PubMed  Google Scholar 

  • Lasic DD, Barenholz Y (1996) Handbook of nonmedical applications of liposomes. CRC Press, Boca Raton

    Google Scholar 

  • Lasic DD, Martin FJ (1995) Stealth liposomes. CRC Press, Boca Raton, p 320

    Google Scholar 

  • Lasic DD, Martin FJ, Gabizon A, Huang SK, Papahadjopoulos D (1991a) Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim Biophys Acta 1070:187–192

    CAS  PubMed  Google Scholar 

  • Lasic DD, Papahadjopoulos D (1998) Medical applications of liposomes. Elsevier, Amsterdam, New York, p 779

    Google Scholar 

  • Lasic DD, Woodle MC, Martin FJ, Valentincic T (1991b) Phase behavior of “stealth-lipid” decithin mixtures. Period Biol 93:287–290

    Google Scholar 

  • Lavasanifar A, Samuel J, Kwon GS (2002) The effect of fatty acid substitution on the in vitro release of amphotericin B from micelles composed of poly(ethylene oxide)-block-poly(N-hexyl stearate-L-aspartamide). J Control Release 79:165–172

    CAS  Google Scholar 

  • Le Garrec D, Taillefer J, Van Lier JE, Lenaerts V, Leroux JC (2002) Optimizing pH-responsive polymeric micelles for drug delivery in a cancer photodynamic therapy model. J Drug Target 10:429–437

    PubMed  Google Scholar 

  • Leamon CP, Cooper SR, Hardee GE (2003) Folate-liposome-mediated antisense oligodeoxynucleotide targeting to cancer cells: evaluation in vitro and in vivo. Bioconjug Chem 14:738–747

    CAS  PubMed  Google Scholar 

  • Leamon CP, Low PS (1991) Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc Natl Acad Sci USA 88:5572–5576

    CAS  PubMed  Google Scholar 

  • Leamon CP, Low PS (2001) Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discov Today 6:44–51

    CAS  PubMed  Google Scholar 

  • Lee CM, Tanaka T, Murai T, Kondo M, Kimura J, Su W, Kitagawa T, Ito T, Matsuda H, Miyasaka M (2002) Novel chondroitin sulfate-binding cationic liposomes loaded with cisplatin efficiently suppress the local growth and liver metastasis of tumor cells in vivo. Cancer Res 62:4282–4288

    CAS  PubMed  Google Scholar 

  • Lee ES, Na K, Bae YH (2003a) Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release 91:103–113

    CAS  Google Scholar 

  • Lee ES, Na K, Bae YH (2005) Super pH-sensitive multifunctional polymeric micelle. Nano Lett 5:325–329

    CAS  PubMed  Google Scholar 

  • Lee ES, Shin HJ, Na K, Bae YH (2003b) Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization. J Control Release 90:363–374

    CAS  Google Scholar 

  • Lee RJ, Low PS (1994) Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 269:3198–3204

    CAS  PubMed  Google Scholar 

  • Leroux J, Roux E, Le Garrec D, Hong K, Drummond DC (2001) N-isopropylacrylamide copolymers for the preparation of pH-sensitive liposomes and polymeric micelles. J Control Release 72:71–84

    CAS  Google Scholar 

  • Leserman LD, Barbet J, Kourilsky F, Weinstein JN (1980) Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature 288:602–604

    CAS  PubMed  Google Scholar 

  • Lestini BJ, Sagnella SM, Xu Z, Shive MS, Richter NJ, Jayaseharan J, Case AJ, Kottke-Marchant K, Anderson JM, Marchant RE (2002) Surface modification of liposomes for selective cell targeting in cardiovascular drug delivery. J Control Release 78:235–247

    CAS  Google Scholar 

  • Levchenko TS, Rammohan R, Lukyanov AN, Whiteman KR, Torchilin VP (2002) Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int J Pharm 240:95–102

    CAS  PubMed  Google Scholar 

  • Liu D, Mori A, Huang L (1991) Large liposomes containing ganglioside GM1 accumulate effectively in spleen. Biochim Biophys Acta 1066:159–165

    CAS  PubMed  Google Scholar 

  • Liu D, Mori A, Huang L (1992) Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim Biophys Acta 1104:95–101

    CAS  PubMed  Google Scholar 

  • Lopes de Menezes DE, Pilarski LM, Allen TM (1998) In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma. Cancer Res 58:3320–3330

    CAS  PubMed  Google Scholar 

  • Lu Y, Low PS (2002a) Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 54:675–693

    CAS  PubMed  Google Scholar 

  • Lu Y, Low PS (2002b) Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors. Cancer Immunol Immunother 51:153–162

    CAS  PubMed  Google Scholar 

  • Lukyanov AN, Elbayoumi TA, Chakilam AR, Torchilin VP (2004a) Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release 100:135–144

    CAS  Google Scholar 

  • Lukyanov AN, Gao Z, Mazzola L, Torchilin VP (2002) Polyethylene glycol-diacyllipid micelles demonstrate increased acculumation in subcutaneous tumors in mice. Pharm Res 19:1424–1429

    CAS  PubMed  Google Scholar 

  • Lukyanov AN, Hartner WC, Torchilin VP (2004b) Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits. J Control Release 94:187–193

    CAS  Google Scholar 

  • Lukyanov AN, Torchilin VP (2004) Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev 56:1273–1289

    CAS  PubMed  Google Scholar 

  • Lundberg BB, Griffiths G, Hansen HJ (2007) Cellular association and cytotoxicity of doxorubicin-loaded immunoliposomes targeted via Fab' fragments of an anti-CD74 antibody. Drug Deliv 14:171–175

    CAS  PubMed  Google Scholar 

  • Madden TD, Bally MB, Hope MJ, Cullis PR, Schieren HP, Janoff AS (1985) Protection of large unilamellar vesicles by trehalose during dehydration: retention of vesicle contents. Biochim Biophys Acta 817:67–74

    CAS  PubMed  Google Scholar 

  • Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    CAS  PubMed  Google Scholar 

  • Maeda H (2003) Enhanced permeability and retention (EPR) effect: basis for drug targeting to tumors. In: Muzykantov V, Torchilin VP (eds) Biomedical aspects of drug targeting. Kluwer, Dordrecht, pp 211–228

    Google Scholar 

  • Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74:47–61

    CAS  Google Scholar 

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    CAS  Google Scholar 

  • Mamot C, Drummond DC, Greiser U, Hong K, Kirpotin DB, Marks JD, Park JW (2003) Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Res 63:3154–3161

    CAS  PubMed  Google Scholar 

  • Mamot C, Drummond DC, Noble CO, Kallab V, Guo Z, Hong K, Kirpotin DB, Park JW (2005) Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 65:11631–11638

    CAS  PubMed  Google Scholar 

  • Mamot C, Ritschard R, Kung W, Park JW, Herrmann R, Rochlitz CF (2006) EGFR-targeted immunoliposomes derived from the monoclonal antibody EMD72000 mediate specific and efficient drug delivery to a variety of colorectal cancer cells. J Drug Target 14:215–223

    CAS  PubMed  Google Scholar 

  • Martin FJ, Papahadjopoulos D (1982) Irreversible coupling of immunoglobulin fragments to preformed vesicles. An improved method for liposome targeting. J Biol Chem 257:286–288

    CAS  PubMed  Google Scholar 

  • Marty C, Schwendener RA (2005) Cytotoxic tumor targeting with scFv antibody-modified liposomes. Methods Mol Med 109:389–402

    CAS  PubMed  Google Scholar 

  • Maruyama K, Okuizumi S, Ishida O, Yamauchi H, Kikuchi H, Iwatsuru M (1994) Phosphatidyl polyglycerols prolong liposome circulation in vivo. Int J Pharm 111:103–107

    CAS  Google Scholar 

  • Maruyama K, Takahashi N, Tagawa T, Nagaike K, Iwatsuru M (1997) Immunoliposomes bearing polyethyleneglycol-coupled Fab' fragment show prolonged circulation time and high extravasation into targeted solid tumors in vivo. FEBS Lett 413:177–180

    CAS  PubMed  Google Scholar 

  • Maruyama K, Takizawa T, Yuda T, Kennel SJ, Huang L, Iwatsuru M (1995) Targetability of novel immunoliposomes modified with amphipathic poly(ethylene glycol)s conjugated at their distal terminals to monoclonal antibodies. Biochim Biophys Acta 1234:74–80

    PubMed  Google Scholar 

  • Maruyama K, Yuda T, Okamoto A, Ishikura C, Kojima S, Iwatsuru M (1991) Effect of molecular weight in amphipathic polyethyleneglycol on prolonging the circulation time of large unilamellar liposomes. Chem Pharm Bull (Tokyo) 39:1620–1622

    CAS  Google Scholar 

  • Maruyama K, Yuda T, Okamoto A, Kojima S, Suginaka A, Iwatsuru M (1992) Prolonged circulation time in vivo of large unilamellar liposomes composed of distearoyl phosphatidylcholine and cholesterol containing amphipathic poly(ethylene glycol). Biochim Biophys Acta 1128:44–49

    CAS  PubMed  Google Scholar 

  • Mastrobattista E, Koning GA, van Bloois L, Filipe AC, Jiskoot W, Storm G (2002) Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins. J Biol Chem 277:27135–27143

    CAS  PubMed  Google Scholar 

  • Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, Shirao K, Okusaka T, Ueno H, Ikeda M, Watanabe N (2004) Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 91:1775–1781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mayhew EG, Lasic D, Babbar S, Martin FJ (1992) Pharmacokinetics and antitumor activity of epirubicin encapsulated in long-circulating liposomes incorporating a polyethylene glycol-derivatized phospholipid. Int J Cancer 51:302–309

    CAS  PubMed  Google Scholar 

  • McBain SC, Yiu HH, Dobson J (2008) Magnetic nanoparticles for gene and drug delivery. Int J Nanomedicine 3:169–180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Metselaar JM, Bruin P, de Boer LW, de Vringer T, Snel C, Oussoren C, Wauben MH, Crommelin DJ, Storm G, Hennink WE (2003) A novel family of L-amino acid-based biodegradable polymer-lipid conjugates for the development of long-circulating liposomes with effective drug-targeting capacity. Bioconjug Chem 14:1156–1164

    CAS  PubMed  Google Scholar 

  • Meyer O, Papahadjopoulos D, Leroux JC (1998) Copolymers of N-isopropylacrylamide can trigger pH sensitivity to stable liposomes. FEBS Lett 421:61–64

    CAS  PubMed  Google Scholar 

  • Miller DW, Batrakova EV, Waltner TO, Alakhov V, Kabanov AV (1997) Interactions of pluronic block copolymers with brain microvessel endothelial cells: evidence of two potential pathways for drug absorption. Bioconjug Chem 8:649–657

    CAS  PubMed  Google Scholar 

  • Mittal KL, Lindman B (1991) Surfactants in solution, vol 1–3. Plenum Press, New York

    Google Scholar 

  • Moein Moghimi S, Hamad I, Bunger R, Andresen TL, Jorgensen K, Hunter AC, Baranji L, Rosivall L, Szebeni J (2006) Activation of the human complement system by cholesterol-rich and PEGylated liposomes-modulation of cholesterol-rich liposome-mediated complement activation by elevated serum LDL and HDL levels. J Liposome Res 16:167–174

    CAS  PubMed  Google Scholar 

  • Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42:463–478

    CAS  PubMed  Google Scholar 

  • Molyneux P (1984) Water-soluble synthetic polymers: properties and behavior. CRC Press, Boca Raton

    Google Scholar 

  • Moreira JN, Gaspar R, Allen TM (2001) Targeting Stealth liposomes in a murine model of human small cell lung cancer. Biochim Biophys Acta 1515:167–176

    CAS  PubMed  Google Scholar 

  • Moreira JN, Ishida T, Gaspar R, Allen TM (2002) Use of the post-insertion technique to insert peptide ligands into pre-formed stealth liposomes with retention of binding activity and cytotoxicity. Pharm Res 19:265–269

    CAS  PubMed  Google Scholar 

  • Müller RH (1991) Colloidal carriers for controlled drug delivery and targeting: modification, characterization, and in vivo distribution. CRC Press, Stuttgart, Boca Raton, Wissenschaftliche Verlagsgesellschaft

    Google Scholar 

  • Muzykantov VR, Torchilin V (2003) Biomedical aspects of drug targeting. Kluwer, Dordrecht

    Google Scholar 

  • Nagasaki Y, Yasugi K, Yamamoto Y, Harada A, Kataoka K (2001) Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules. Biomacromolecules 2:1067–1070

    CAS  PubMed  Google Scholar 

  • Naper DH (1983) Polymeric stabilization of colloidal dispersions. Academic Press, New York

    Google Scholar 

  • Needham D, McIntosh TJ, Lasic DD (1992) Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. Biochim Biophys Acta 1108:40–48

    CAS  PubMed  Google Scholar 

  • Ni S, Stephenson SM, Lee RJ (2002) Folate receptor targeted delivery of liposomal daunorubicin into tumor cells. Anticancer Res 22:2131–2135

    CAS  PubMed  Google Scholar 

  • Niedermann G, Weissig V, Sternberg B, Lasch J (1991) Carboxyacyl derivatives of cardiolipin as four-tailed hydrophobic anchors for the covalent coupling of hydrophilic proteins to liposomes. Biochim Biophys Acta 1070:401–408

    CAS  PubMed  Google Scholar 

  • Nobs L, Buchegger F, Gurny R, Allemann E (2004) Current methods for attaching targeting ligands to liposomes and nanoparticles. J Pharm Sci 93:1980–1992

    CAS  PubMed  Google Scholar 

  • O'Shaughnessy JA (2003) Pegylated liposomal doxorubicin in the treatment of breast cancer. Clin Breast Cancer 4:318–328

    PubMed  Google Scholar 

  • Ogris M, Brunner S, Schuller S, Kircheis R, Wagner E (1999) PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther 6:595–605

    CAS  PubMed  Google Scholar 

  • Omori N, Maruyama K, Jin G, Li F, Wang SJ, Hamakawa Y, Sato K, Nagano I, Shoji M, Abe K (2003) Targeting of post-ischemic cerebral endothelium in rat by liposomes bearing polyethylene glycol-coupled transferrin. Neurol Res 25:275–279

    CAS  PubMed  Google Scholar 

  • Orekhova NM, Akchurin RS, Belyaev AA, Smirnov MD, Ragimov SE, Orekhov AN (1990) Local prevention of thrombosis in animal arteries by means of magnetic targeting of aspirin-loaded red cells. Thromb Res 57:611–616

    CAS  PubMed  Google Scholar 

  • Ota T, Maeda M, Tatsuka M (2002) Cationic liposomes with plasmid DNA influence cancer metastatic capability. Anticancer Res 22:4049–4052

    CAS  PubMed  Google Scholar 

  • Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55:403–419

    CAS  PubMed  Google Scholar 

  • Palmer TN, Caride VJ, Caldecourt MA, Twickler J, Abdullah V (1984) The mechanism of liposome accumulation in infarction. Biochim Biophys Acta 797:363–368

    CAS  PubMed  Google Scholar 

  • Pan H, Han L, Chen W, Yao M, Lu W (2008) Targeting to tumor necrotic regions with biotinylated antibody and streptavidin modified liposomes. J Control Release 125:228–235

    CAS  Google Scholar 

  • Pan X, Lee RJ (2007) Construction of anti-EGFR immunoliposomes via folate-folate binding protein affinity. Int J Pharm 336:276–283

    CAS  PubMed  Google Scholar 

  • Pan X, Wu G, Yang W, Barth RF, Tjarks W, Lee RJ (2007) Synthesis of cetuximab-immunoliposomes via a cholesterol-based membrane anchor for targeting of EGFR. Bioconjug Chem 18:101–108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pan XQ, Wang H, Lee RJ (2003) Antitumor activity of folate receptor-targeted liposomal doxorubicin in a KB oral carcinoma murine xenograft model. Pharm Res 20:417–422

    CAS  PubMed  Google Scholar 

  • Pan XQ, Zheng X, Shi G, Wang H, Ratnam M, Lee RJ (2002) Strategy for the treatment of acute myelogenous leukemia based on folate receptor beta-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood 100:594–602

    CAS  PubMed  Google Scholar 

  • Pang SNJ (1993) Final report on the safety assessment of polyethylene glycols (PEGs) -6, -8, -32, -75, -150, -14M, -20M. J Am Coll Toxicol 12:429–457

    Google Scholar 

  • Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, Lee KD, Woodle MC, Lasic DD, Redemann C et al (1991) Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 88:11460–11464

    CAS  PubMed  Google Scholar 

  • Park EK, Kim SY, Lee SB, Lee YM (2005) Folate-conjugated methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. J Control Release 109:158–168

    CAS  Google Scholar 

  • Park JW, Benz CC, Martin FJ (2004) Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin Oncol 31:196–205

    CAS  PubMed  Google Scholar 

  • Park JW, Hong K, Carter P, Asgari H, Guo LY, Keller GA, Wirth C, Shalaby R, Kotts C, Wood WI et al (1995) Development of anti-p185HER2 immunoliposomes for cancer therapy. Proc Natl Acad Sci USA 92:1327–1331

    CAS  PubMed  Google Scholar 

  • Park JW, Hong K, Kirpotin DB, Colbern G, Shalaby R, Baselga J, Shao Y, Nielsen UB, Marks JD, Moore D, Papahadjopoulos D, Benz CC (2002) Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res 8:1172–1181

    CAS  PubMed  Google Scholar 

  • Park JW, Hong K, Kirpotin DB, Meyer O, Papahadjopoulos D, Benz CC (1997) Anti-HER2 immunoliposomes for targeted therapy of human tumors. Cancer Lett 118:153–160

    CAS  PubMed  Google Scholar 

  • Park JW, Kirpotin DB, Hong K, Shalaby R, Shao Y, Nielsen UB, Marks JD, Papahadjopoulos D, Benz CC (2001) Tumor targeting using anti-her2 immunoliposomes. J Control Release 74:95–113

    CAS  Google Scholar 

  • Pastorino F, Brignole C, Di Paolo D, Nico B, Pezzolo A, Marimpietri D, Pagnan G, Piccardi F, Cilli M, Longhi R, Ribatti D, Corti A, Allen TM, Ponzoni M (2006) Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. Cancer Res 66:10073–10082

    CAS  PubMed  Google Scholar 

  • Pastorino F, Brignole C, Marimpietri D, Sapra P, Moase EH, Allen TM, Ponzoni M (2003) Doxorubicin-loaded Fab' fragments of anti-disialoganglioside immunoliposomes selectively inhibit the growth and dissemination of human neuroblastoma in nude mice. Cancer Res 63:86–92

    CAS  PubMed  Google Scholar 

  • Pauwels EK, Erba P (2007) Towards the use of nanoparticles in cancer therapy and imaging. Drug News Perspect 20:213–220

    CAS  PubMed  Google Scholar 

  • Peer D, Margalit R (2004) Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int J Cancer 108:780–789

    CAS  PubMed  Google Scholar 

  • Perez-Lopez ME, Curiel T, Gomez JG, Jorge M (2007) Role of pegylated liposomal doxorubicin (Caelyx) in the treatment of relapsing ovarian cancer. Anticancer Drugs 18:611–617

    CAS  PubMed  Google Scholar 

  • Perez AT, Domenech GH, Frankel C, Vogel CL (2002) Pegylated liposomal doxorubicin (Doxil) for metastatic breast cancer: the Cancer Research Network, Inc. experience. Cancer Invest (Suppl 2) 20:22–29

    CAS  Google Scholar 

  • Potineni A, Lynn DM, Langer R, Amiji MM (2003) Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery. J Control Release 86:223–234

    CAS  Google Scholar 

  • Powell GM (1980) Polyethylene glycol. In: Davidson RL (ed) Handbook of water-soluble gums and resins. McGraw-Hill, New York, pp 1–31

    Google Scholar 

  • Qin J, Chen D, Hu H, Cui Q, Qiao M, Chen B (2007) Surface modification of RGD-liposomes for selective drug delivery to monocytes/neutrophils in brain. Chem Pharm Bull (Tokyo) 55:1192–1197

    CAS  Google Scholar 

  • Raffaghello L, Pagnan G, Pastorino F, Cosimo E, Brignole C, Marimpietri D, Bogenmann E, Ponzoni M, Montaldo PG (2003) Immunoliposomal fenretinide: a novel antitumoral drug for human neuroblastoma. Cancer Lett 197:151–155

    CAS  PubMed  Google Scholar 

  • Rammohan R, Levchenko T, Weissig V, Chakilam A, Torchilin V (2001) Immunomicelles: attachment of specific ligands including monoclonal antibodies to polymeric micelles. 28th International Symposium on Controlled Release of Bioactive Materials, San Diego 2001. Control Release Society, Inc., pp 484–485

    Google Scholar 

  • Reddy JA, Abburi C, Hofland H, Howard SJ, Vlahov I, Wils P, Leamon CP (2002) Folate-targeted, cationic liposome-mediated gene transfer into disseminated peritoneal tumors. Gene Ther 9:1542–1550

    CAS  PubMed  Google Scholar 

  • Ringsdorf H (1975) Structure and properties of pharmacologically active polymers. J Polym Sci 51:135–153

    CAS  Google Scholar 

  • Rolland A (1993) Pharmaceutical particulate carriers: therapeutic applications carriers. Marcel Dekker, New York

    Google Scholar 

  • Rose PG (2005) Pegylated liposomal doxorubicin: optimizing the dosing schedule in ovarian cancer. Oncologist 10:205–214

    CAS  PubMed  Google Scholar 

  • Roth A, Drummond DC, Conrad F, Hayes ME, Kirpotin DB, Benz CC, Marks JD, Liu B (2007) Anti-CD166 single chain antibody-mediated intracellular delivery of liposomal drugs to prostate cancer cells. Mol Cancer Ther 6:2737–2746

    CAS  PubMed  Google Scholar 

  • Roux E, Francis M, Winnik FM, Leroux JC (2002a) Polymer based pH-sensitive carriers as a means to improve the cytoplasmic delivery of drugs. Int J Pharm 242:25–36

    CAS  PubMed  Google Scholar 

  • Roux E, Passirani C, Scheffold S, Benoit JP, Leroux JC (2004) Serum-stable and long-circulating, PEGylated, pH-sensitive liposomes. J Control Release 94:447–451

    CAS  Google Scholar 

  • Roux E, Stomp R, Giasson S, Pezolet M, Moreau P, Leroux JC (2002b) Steric stabilization of liposomes by pH-responsive N-isopropylacrylamide copolymer. J Pharm Sci 91:1795–1802

    CAS  PubMed  Google Scholar 

  • Rowe RC, Sheskey PJ, Weller PJ (2003) Handbook of pharmaceutical excipients, 4th edn. Pharmaceutical Press, American Pharmaceutical Association, London, Chicago Washington, DC

    Google Scholar 

  • Sapra P, Allen TM (2003) Ligand-targeted liposomal anticancer drugs. Prog Lipid Res 42: 439–462

    CAS  PubMed  Google Scholar 

  • Sapra P, Allen TM (2004) Improved outcome when B-cell lymphoma is treated with combinations of immunoliposomal anticancer drugs targeted to both the CD19 and CD20 epitopes. Clin Cancer Res 10:2530–2537

    CAS  PubMed  Google Scholar 

  • Sawant RM, Hurley JP, Salmaso S, Kale A, Tolcheva E, Levchenko TS, Torchilin VP (2006) “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug Chem 17:943–949

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schiffelers RM, Koning GA, ten Hagen TL, Fens MH, Schraa AJ, Janssen AP, Kok RJ, Molema G, Storm G (2003) Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release 91:115–122

    CAS  Google Scholar 

  • Schmidinger M, Wenzel C, Locker GJ, Muehlbacher F, Steininger R, Gnant M, Crevenna R, Budinsky AC (2001) Pilot study with pegylated liposomal doxorubicin for advanced or unresectable hepatocellular carcinoma. Br J Cancer 85:1850–1852

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schnyder A, Krahenbuhl S, Drewe J, Huwyler J (2005) Targeting of daunomycin using biotinylated immunoliposomes: pharmacokinetics, tissue distribution and in vitro pharmacological effects. J Drug Target 13:325–335

    CAS  PubMed  Google Scholar 

  • Schwonzen M, Kurbacher CM, Mallmann P (2000) Liposomal doxorubicin and weekly paclitaxel in the treatment of metastatic breast cancer. Anticancer Drugs 11:681–685

    CAS  PubMed  Google Scholar 

  • Senior J, Delgado C, Fisher D, Tilcock C, Gregoriadis G (1991) Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochim Biophys Acta 1062:77–82

    CAS  PubMed  Google Scholar 

  • Senior JH (1987) Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst 3:123–193

    CAS  PubMed  Google Scholar 

  • Shalaev EY, Steponkus PL (1999) Phase diagram of 1, 2-dioleoylphosphatidylethanolamine (DOPE): water system at subzero temperatures and at low water contents. Biochim Biophys Acta 1419:229–247

    CAS  PubMed  Google Scholar 

  • Sheff D (2004) Endosomes as a route for drug delivery in the real world. Adv Drug Deliv Rev 56:927–930

    CAS  PubMed  Google Scholar 

  • Shuai X, Merdan T, Schaper AK, Xi F, Kissel T (2004) Core-cross-linked polymeric micelles as paclitaxel carriers. Bioconjug Chem 15:441–448

    CAS  PubMed  Google Scholar 

  • Simoes S, Moreira JN, Fonseca C, Duzgunes N, de Lima MC (2004) On the formulation of pH-sensitive liposomes with long circulation times. Adv Drug Deliv Rev 56:947–965

    CAS  PubMed  Google Scholar 

  • Skubitz KM (2003) Phase II trial of pegylated-liposomal doxorubicin (Doxil) in sarcoma. Cancer Invest 21:167–176

    CAS  PubMed  Google Scholar 

  • Sofou S, Sgouros G (2008) Antibody-targeted liposomes in cancer therapy and imaging. Expert Opin Drug Deliv 5:189–204

    CAS  PubMed  Google Scholar 

  • Sou K, Endo T, Takeoka S, Tsuchida E (2000) Poly(ethylene glycol)-modification of the phospholipid vesicles by using the spontaneous incorporation of poly(ethylene glycol)-lipid into the vesicles. Bioconjug Chem 11:372–379

    CAS  PubMed  Google Scholar 

  • Stephenson SM, Yang W, Stevens PJ, Tjarks W, Barth RF, Lee RJ (2003) Folate receptor-targeted liposomes as possible delivery vehicles for boron neutron capture therapy. Anticancer Res 23:3341–3345

    CAS  PubMed  Google Scholar 

  • Sudimack JJ, Guo W, Tjarks W, Lee RJ (2002) A novel pH-sensitive liposome formulation containing oleyl alcohol. Biochim Biophys Acta 1564:31–37

    CAS  PubMed  Google Scholar 

  • Sugano M, Egilmez NK, Yokota SJ, Chen FA, Harding J, Huang SK, Bankert RB (2000) Antibody targeting of doxorubicin-loaded liposomes suppresses the growth and metastatic spread of established human lung tumor xenografts in severe combined immunodeficient mice. Cancer Res 60:6942–6949

    CAS  PubMed  Google Scholar 

  • Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzawa T, Nagamura S, Saito H, Ohta S, Hanai N, Kanazawa J, Okabe M, Yamasaki M (2002) Enhanced tumor cell selectivity of adriamycin-monoclonal antibody conjugate via a poly(ethylene glycol)-based cleavable linker. J Control Release 79:229–242

    CAS  Google Scholar 

  • Symon Z, Peyser A, Tzemach D, Lyass O, Sucher E, Shezen E, Gabizon A (1999) Selective delivery of doxorubicin to patients with breast carcinoma metastases by stealth liposomes. Cancer 86:72–78

    CAS  PubMed  Google Scholar 

  • Szoka F Jr, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9:467–508

    CAS  PubMed  Google Scholar 

  • Takeuchi H, Kojima H, Toyoda T, Yamamoto H, Hino T, Kawashima Y (1999) Prolonged circulation time of doxorubicin-loaded liposomes coated with a modified polyvinyl alcohol after intravenous injection in rats. Eur J Pharm Biopharm 48:123–129

    CAS  PubMed  Google Scholar 

  • Takeuchi H, Kojima H, Yamamoto H, Kawashima Y (2001) Evaluation of circulation profiles of liposomes coated with hydrophilic polymers having different molecular weights in rats. J Control Release 75:83–91

    CAS  Google Scholar 

  • Tan PH, Manunta M, Ardjomand N, Xue SA, Larkin DF, Haskard DO, Taylor KM, George AJ (2003) Antibody targeted gene transfer to endothelium. J Gene Med 5:311–323

    CAS  PubMed  Google Scholar 

  • Terada T, Mizobata M, Kawakami S, Yamashita F, Hashida M (2007) Optimization of tumor-selective targeting by basic fibroblast growth factor-binding peptide grafted PEGylated liposomes. J Control Release 119:262–270

    CAS  Google Scholar 

  • Torchilin V, Klibanov A (1993) Coupling and labeling of phospholipids. In: Cevc G (ed) Phospholipid Handbook. Marcel Dekker, New York, pp 293–322

    Google Scholar 

  • Torchilin VP (1991) Immobilized enzymes in medicine. Progress in clinical biochemistry and medicine Vol 11. Springer, Berlin, p 206

    Google Scholar 

  • Torchilin VP (1995) Handbook of targeted delivery of imaging agents. CRC Press, Boca Raton, FL

    Google Scholar 

  • Torchilin VP (1996a) Affinity liposomes in vivo: factors influencing target accumulation. J Mol Recognit 9:335–346

    CAS  PubMed  Google Scholar 

  • Torchilin VP (1996b) How do polymers prolong circulation times of liposomes. J Liposome Res 9:99–116

    Google Scholar 

  • Torchilin VP (1998) Polymer-coated long-circulating microparticulate pharmaceuticals. J Microencapsul 15:1–19

    CAS  PubMed  Google Scholar 

  • Torchilin VP (2000) Drug targeting. Eur J Pharm Sci 11(Suppl 2):S81–S91

    CAS  PubMed  Google Scholar 

  • Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73:137–172

    CAS  Google Scholar 

  • Torchilin VP (2002) Strategies and means for drug targeting: an overview. In: Muzykantov V, Torchilin VP (eds) Biomedical aspects of drug targeting. Kluwer, Boston, pp 3–26

    Google Scholar 

  • Torchilin VP (2008) Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev 60:548–558

    CAS  PubMed  Google Scholar 

  • Torchilin VP, Klibanov AL, Huang L, O'Donnell S, Nossiff ND, Khaw BA (1992) Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardium. FASEB J 6:2716–2719

    CAS  PubMed  Google Scholar 

  • Torchilin VP, Klibanov AL, Ivanov NN, Gluckhova MA, Koteliansky VE, Kleinman HK, Martin GR (1985) Binding of antibodies in liposomes to extracellular matrix antigens. J Cell Biochem 28:23–29

    CAS  PubMed  Google Scholar 

  • Torchilin VP, Levchenko TS (2003) TAT-liposomes: a novel intracellular drug carrier. Curr Protein Pept Sci 4:133–140

    CAS  PubMed  Google Scholar 

  • Torchilin VP, Levchenko TS, Lukyanov AN, Khaw BA, Klibanov AL, Rammohan R, Samokhin GP, Whiteman KR (2001a) p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim Biophys Acta 1511:397–411

    CAS  PubMed  Google Scholar 

  • Torchilin VP, Levchenko TS, Rammohan R, Volodina N, Papahadjopoulos-Sternberg B, D'Souza GG (2003a) Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc Natl Acad Sci USA 100:1972–1977

    CAS  PubMed  Google Scholar 

  • Torchilin VP, Levchenko TS, Whiteman KR, Yaroslavov AA, Tsatsakis AM, Rizos AK, Michailova EV, Shtilman MI (2001b) Amphiphilic poly-N-vinylpyrrolidones: synthesis, properties and liposome surface modification. Biomaterials 22:3035–3044

    CAS  PubMed  Google Scholar 

  • Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B (2003b) Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci USA 100:6039–6044

    CAS  PubMed  Google Scholar 

  • Torchilin VP, Omelyanenko VG, Papisov MI, Bogdanov AA Jr, Trubetskoy VS, Herron JN, Gentry CA (1994) Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim Biophys Acta 1195:11–20

    CAS  PubMed  Google Scholar 

  • Torchilin VP, Papisov MI, Orekhova NM, Belyaev AA, Petrov AD, Ragimov SE (1988) Magnetically driven thrombolytic preparation containing immobilized streptokinase-targeted transport and action. Haemostasis 18:113–116

    CAS  PubMed  Google Scholar 

  • Torchilin VP, Trubetskoy VS (1995) Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev 16:141–155

    CAS  Google Scholar 

  • Torchilin VP, Trubetskoy VS, Whiteman KR, Caliceti P, Ferruti P, Veronese FM (1995) New synthetic amphiphilic polymers for steric protection of liposomes in vivo. J Pharm Sci 84:1049–1053

    CAS  PubMed  Google Scholar 

  • Torchilin VP, Weissig V (2003) Liposomes: a practical approach. Practical approach series, Vol 264, 2nd edn. Oxford University Press, Oxford, p 396

    Google Scholar 

  • Torchilin VP, Weissig V, Martin FJ, Heath TD, New RRC (2003c) Surface modifications of liposomes. In: Torchilin VP, Weissig V (eds) Liposomes: a practical approach, 2nd edn. Oxford University Press, Oxford, pp 193–229

    Google Scholar 

  • Torchilin VP, Zhou F, Huang L (1993) pH-sensitive liposomes. J Liposome Res 3:201–255

    CAS  Google Scholar 

  • Trubetskaya OV, Trubetskoy VS, Domogatsky SP, Rudin AV, Popov NV, Danilov SM, Nikolayeva MN, Klibanov AL, Torchilin VP (1988) Monoclonal antibody to human endothelial cell surface internalization and liposome delivery in cell culture. FEBS Lett 228:131–134

    CAS  PubMed  Google Scholar 

  • Trubetskoy VS, Gazelle GS, Wolf GL, Torchilin VP (1997) Block-copolymer of polyethylene glycol and polylysine as a carrier of organic iodine: design of long-circulating particulate contrast medium for X-ray computed tomography. J Drug Target 4:381–388

    CAS  PubMed  Google Scholar 

  • Trubetskoy VS, Torchilin VP (1995) Use of polyoxyethylene-lipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostic agents. Adv Drug Deliv Rev 16:311–320

    CAS  Google Scholar 

  • Tuffin G, Waelti E, Huwyler J, Hammer C, Marti HP (2005) Immunoliposome targeting to mesangial cells: a promising strategy for specific drug delivery to the kidney. J Am Soc Nephrol 16:3295–3305

    CAS  PubMed  Google Scholar 

  • Uchino H, Matsumura Y, Negishi T, Koizumi F, Hayashi T, Honda T, Nishiyama N, Kataoka K, Naito S, Kakizoe T (2005) Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br J Cancer 93:678–687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Varga CM, Wickham TJ, Lauffenburger DA (2000) Receptor-mediated targeting of gene delivery vectors: insights from molecular mechanisms for improved vehicle design. Biotechnol Bioeng 70:593–605

    CAS  PubMed  Google Scholar 

  • Venugopalan P, Jain S, Sankar S, Singh P, Rawat A, Vyas SP (2002) pH-sensitive liposomes: mechanism of triggered release to drug and gene delivery prospects. Pharmazie 57:659–671

    CAS  PubMed  Google Scholar 

  • Veronese FM (2001) Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22:405–417

    CAS  PubMed  Google Scholar 

  • Vingerhoeds MH, Storm G, Crommelin DJ (1994) Immunoliposomes in vivo. Immunomethods 4:259–272

    CAS  PubMed  Google Scholar 

  • Vinogradov S, Batrakova E, Li S, Kabanov A (1999) Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells. Bioconjug Chem 10:851–860

    CAS  PubMed  Google Scholar 

  • Vinogradov SV, Bronich TK, Kabanov AV (1998) Self-assembly of polyamine-poly(ethylene glycol) copolymers with phosphorothioate oligonucleotides. Bioconjug Chem 9:805–812

    CAS  PubMed  Google Scholar 

  • Vitetta ES, Krolick KA, Miyama-Inaba M, Cushley W, Uhr JW (1983) Immunotoxins: a new approach to cancer therapy. Science 219:644–650

    CAS  PubMed  Google Scholar 

  • Voinea M, Manduteanu I, Dragomir E, Capraru M, Simionescu M (2005) Immunoliposomes directed toward VCAM-1 interact specifically with activated endothelial cells–a potential tool for specific drug delivery. Pharm Res 22:1906–1917

    CAS  PubMed  Google Scholar 

  • Volkel T, Holig P, Merdan T, Muller R, Kontermann RE (2004) Targeting of immunoliposomes to endothelial cells using a single-chain Fv fragment directed against human endoglin (CD105). Biochim Biophys Acta 1663:158–166

    PubMed  Google Scholar 

  • Vutla NB, Betageri GV, Banga AK (1996) Transdermal iontophoretic delivery of enkephalin formulated in liposomes. J Pharm Sci 85:5–8

    CAS  PubMed  Google Scholar 

  • Wakebayashi D, Nishiyama N, Yamasaki Y, Itaka K, Kanayama N, Harada A, Nagasaki Y, Kataoka K (2004) Lactose-conjugated polyion complex micelles incorporating plasmid DNA as a targetable gene vector system: their preparation and gene transfecting efficiency against cultured HepG2 cells. J Control Release 95:653–664

    CAS  Google Scholar 

  • Wang GP, Qi ZH, Chen FP (2008) Treatment of acute myeloid leukemia by directly targeting both leukemia stem cells and oncogenic molecule with specific scFv-immunolipoplexes as a deliverer. Med Hypotheses 70:122–127

    CAS  PubMed  Google Scholar 

  • Wang J, Mongayt D, Torchilin VP (2005) Polymeric micelles for delivery of poorly soluble drugs: preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly(ethylene glycol)-lipid conjugate and positively charged lipids. J Drug Target 13:73–80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weinstein JN, Magin RL, Yatvin MB, Zaharko DS (1979) Liposomes and local hyperthermia: selective delivery of methotrexate to heated tumors. Science 204:188–191

    CAS  PubMed  Google Scholar 

  • Weissig V, Gregoriadis G (1992) Coupling of aminogroup bearing ligands to liposomes. In: Gregoriadis G (ed) Liposome technology, vol 3. CRC Press, Boca Raton, pp 231–248

    Google Scholar 

  • Weissig V, Lasch J, Gregoriadis G (1990) Covalent binding of peptides at liposome surfaces. Pharmazie 45:849–850

    CAS  Google Scholar 

  • Weissig V, Lasch J, Klibanov AL, Torchilin VP (1986) A new hydrophobic anchor for the attachment of proteins to liposomal membranes. FEBS Lett 202:86–90

    CAS  PubMed  Google Scholar 

  • Weissig V, Whiteman KR, Torchilin VP (1998) Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous Lewis lung carcinoma in mice. Pharm Res 15:1552–1556

    CAS  PubMed  Google Scholar 

  • Whiteman KR, Subr V, Ulbrich K, Torchilin VP (2001) Poly(HPMA)-coated liposomes demonstrate prolonged circulation in mice. J Liposome Res 11:153–164

    CAS  PubMed  Google Scholar 

  • Widder KJ, Marino PA, Morris RM, Senyei AE (1983) Targeting antineoplastic agents using magnetic albumin microspheres. In: Goldberg EP (ed) Targeted Drugs. Wiley, New York, pp 201–230

    Google Scholar 

  • Williams AS, Camilleri JP, Goodfellow RM, Williams BD (1996) A single intra-articular injection of liposomally conjugated methotrexate suppresses joint inflammation in rat antigen-induced arthritis. Br J Rheumatol 35:719–724

    CAS  PubMed  Google Scholar 

  • Winslow RM, Vandegriff KD, Intaglietta M (1996) Blood substitutes: new challenges. Birkhäuser, Boston

    Google Scholar 

  • Wollina U, Dummer R, Brockmeyer NH, Konrad H, Busch JO, Kaatz M, Knopf B, Koch HJ, Hauschild A (2003) Multicenter study of pegylated liposomal doxorubicin in patients with cutaneous T-cell lymphoma. Cancer 98:993–1001

    CAS  PubMed  Google Scholar 

  • Woodle MC (1993) Surface-modified liposomes: assessment and characterization for increased stability and prolonged blood circulation. Chem Phys Lipids 64:249–262

    CAS  PubMed  Google Scholar 

  • Woodle MC (1998) Controlling liposome blood clearance by surface-grafted polymers. Adv Drug Deliv Rev 32:139–152

    CAS  PubMed  Google Scholar 

  • Woodle MC, Engbers CM, Zalipsky S (1994) New amphipatic polymer-lipid conjugates forming long-circulating reticuloendothelial system-evading liposomes. Bioconjug Chem 5:493–496

    CAS  PubMed  Google Scholar 

  • Woodle MC, Storm G (1998) Long circulating liposomes: old drugs, new therapeutics. Biotechnology intelligence unit. Springer, Berlin, p 301

    Google Scholar 

  • Xiong XB, Mahmud A, Uludag H, Lavasanifar A (2007) Conjugation of arginine-glycine-aspartic acid peptides to poly(ethylene oxide)-b-poly(epsilon-caprolactone) micelles for enhanced intracellular drug delivery to metastatic tumor cells. Biomacromolecules 8:874–884

    CAS  PubMed  Google Scholar 

  • Xu L, Huang CC, Huang W, Tang WH, Rait A, Yin YZ, Cruz I, Xiang LM, Pirollo KF, Chang EH (2002) Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol Cancer Ther 1:337–346

    CAS  PubMed  Google Scholar 

  • Yamaoka T, Tabata Y, Ikada Y (1994) Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci 83:601–606

    CAS  PubMed  Google Scholar 

  • Yang T, Choi MK, Cui FD, Kim JS, Chung SJ, Shim CK, Kim DD (2007) Preparation and evaluation of paclitaxel-loaded PEGylated immunoliposome. J Control Release 120:169–177

    CAS  Google Scholar 

  • Yerushalmi N, Arad A, Margalit R (1994) Molecular and cellular studies of hyaluronic acid-modified liposomes as bioadhesive carriers for topical drug delivery in wound healing. Arch Biochem Biophys 313:267–273

    CAS  PubMed  Google Scholar 

  • Yoo HS, Lee EA, Park TG (2002) Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J Control Release 82:17–27

    CAS  Google Scholar 

  • Yoo HS, Park TG (2004) Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J Control Release 100:247–256

    CAS  Google Scholar 

  • Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55:3752–3756

    CAS  PubMed  Google Scholar 

  • Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK (1994) Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res 54:3352–3356

    CAS  PubMed  Google Scholar 

  • Yuan X, Harada A, Yamasaki Y, Kataoka K (2005) Stabilization of lysozyme-incorporated polyion complex micelles by the omega-end derivatization of poly(ethylene glycol)-poly(alpha, beta-aspartic acid) block copolymers with hydrophobic groups. Langmuir 21:2668–2674

    CAS  PubMed  Google Scholar 

  • Zalipsky S (1995) Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv Drug Deliv Rev 16:157–182

    CAS  Google Scholar 

  • Zalipsky S, Gittelman J, Mullah N, Qazen MM, Harding JA (1998) Biologically active ligand-bearing polymer-grafted liposomes. In: Gregoriadis G (ed) Targeting of drugs 6: strategies for stealth therapeutic systems. Plenum Press, New York, pp 131–139

    Google Scholar 

  • Zalipsky S, Qazen M, Walker JA 2nd, Mullah N, Quinn YP, Huang SK (1999) New detachable poly(ethylene glycol) conjugates: cysteine-cleavable lipopolymers regenerating natural phospholipid, diacyl phosphatidylethanolamine. Bioconjug Chem 10:703–707

    CAS  PubMed  Google Scholar 

  • Zhang JX, Zalipsky S, Mullah N, Pechar M, Allen TM (2004) Pharmaco attributes of dioleoylphosphatidylethanolamine/cholesterylhemisuccinate liposomes containing different types of cleavable lipopolymers. Pharmacol Res 49:185–198

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Torchilin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Torchilin, V.P. (2010). Passive and Active Drug Targeting: Drug Delivery to Tumors as an Example. In: Schäfer-Korting, M. (eds) Drug Delivery. Handbook of Experimental Pharmacology, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00477-3_1

Download citation

Publish with us

Policies and ethics