Skip to main content

Automatic Flight Control Systems

  • Chapter
  • First Online:
Analysis and Control of Nonlinear Systems

Part of the book series: Mathematical Engineering ((MATHENGIN))

The present chapter1 is devoted to the flatness-based control design for one of the major control applications of the 20th century, namely ight control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • R. Abraham and J. Marsden. Foundations of Mechanics. Benjamin/Cummings Pub. Co., Reading Mass., 2nd edition, 1978.

    Google Scholar 

  • R. L. Anderson and N. H. Ibragimov. Lie-Bäcklund Transformations in Applications. SIAM, Philadelphia, 1979.

    Google Scholar 

  • B. D’ Andréa-Novel and J. Lévine. Modelling and nonlinear control of an overhead crane. In M.A. Kashoek, J.H. van Schuppen, and A.C.M. Rand, editors, Robust Control of Linear and Nonlinear Systems, MTNS’89, volume II, pages 523–529. Birkhäuser, Boston, 1990.

    Google Scholar 

  • D.V. Anosov and V.I. Arnold. Dynamical Systems, I., volume 1 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, New York, 1980.

    Google Scholar 

  • A.C. Antoulas. On canonical forms for linear constant systems. Int. J. Control, 33(1):95–122, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  • E. Aranda-Bricaire, C.H. Moog, and J.-B. Pomet. A linear algebraic framework for dynamic feedback linearization. IEEE Trans. Automat. Contr., 40(1):127–132, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  • V.I. Arnold. Équations Différentielles Ordinaires. MIR, Moscou, 1974.

    MATH  Google Scholar 

  • V.I. Arnold. Chapitres Supplémentaires de la Théorie des Équations Différentielles Ordinaires. MIR, Moscou, 1980.

    MATH  Google Scholar 

  • D. Avanessoff and J.-B. Pomet. Flatness and Monge parameterization of two-input systems, control-affne with 4 states or general with 3 states. ESAIM. Contrôle, Optimisation et Calcul des Variations, 13(2):237–264, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  • L. Bers. On Hilbert’s 22nd problem. In Browder F., editor, Mathematical Developments Arising From Hilbert Problems, Proceedings of Symposia in Pure Mathematics, pages 559–609. American Mathematical Society, Providence, Rhode Island, 1976.

    Google Scholar 

  • D. Bestle and M. Zeitz. Canonical form design for nonlinear observers with linearizable error dynamics. Int. J. of Control, 23:419–431, 1981.

    Google Scholar 

  • L. Bitauld, M. Fliess, and J. Lévine. A flatness based control synthesis of linear systems and application to windshield wipers. In Proc. ECC’97, Brussels, July 1997.

    Google Scholar 

  • W. Boothby. An introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, New York, 1975.

    MATH  Google Scholar 

  • P. Brunovský. A classication of linear controllable systems. Kybernetica, 6:176–178, 1970.

    Article  Google Scholar 

  • J. Carr. Application of Center Manifold Theory. Springer, 1981.

    Google Scholar 

  • É. Cartan. Sur l’équivalence absolue de certains systèmes d’équations différentielles et sur certaines familles de courbes. Bull. Soc. Math. France, 42:12–48, 1914. reédité in Oeuvres Complètes, part II, vol 2, pp. 1133–1168, CNRS, Paris, 1984.

    MATH  MathSciNet  Google Scholar 

  • H. Cartan. Calcul Différentiel. Hermann, Paris, 1967.

    MATH  Google Scholar 

  • B. Charlet, J. Lévine, and R. Marino. On dynamic feedback linearization. Systems & Control Letters, 13:143–151, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  • B. Charlet, J. Lévine, and R. Marino. Sufficient conditions for dynamic state feedback linearization. SIAM J. Control Optimization, 29(1):38–57, 1991.

    Article  MATH  Google Scholar 

  • S.S. Chern, W.H. Chen, and K.S. Lam. Lectures on Differential Geometry, volume 1 of Series on University Mathematics. World Scientic, 2000.

    Google Scholar 

  • V.N. Chetverikov. New flatness conditions for control systems. In Proceedings of NOLCOS’01, St. Petersburg, pages 168–173, 2001.

    Google Scholar 

  • C. Chevalley. Theory of Lie Groups. Princeton University Press, 1946.

    Google Scholar 

  • Y.K. Chin, A. Kade, J. Kowalik, and D. Graham. Electronic windshield wiper system i: modelling and validation, ii: control and sensitivity study. Int. J. of Vehicle design, 12(2):175–196, 1991.

    Google Scholar 

  • Y. Choquet-Bruhat. Géométrie différentielle et systèmes extérieurs. Dunod, Paris, 1968.

    MATH  Google Scholar 

  • P.M. Cohn. Free Rings and Their Relations. Academic Press, London, 1985.

    MATH  Google Scholar 

  • O. Dahl. Path-constrained robot control with limited torques–experimental evaluation. IEEE Trans. on Robotics and Automation, 10(5):658–669, 1994.

    Article  Google Scholar 

  • O. Dahl and L. Nielsen. Torque-limited path following by on-line trajectory time scaling. IEEE Trans. on Robotics and Automation, 6(5):554–561, 1990.

    Article  Google Scholar 

  • J. De Dona, F. Suryawan, M. Seron, and J. Lévine. A flatness-based iterative method for reference trajectory generation in constrained NMPC. In D. Raimondo L. Magni and F. Allgöwer, editors, Proc. of the International Workshop on Assessment and Future Directions of Nonlinear Model Predictive Control, NMPC’08, Pavia, Italy, 2008.

    Google Scholar 

  • E. Delaleau and V. Hagenmeyer. Commande prédictive non linéaire fondée sur la platitude différentielle. In D. Dumur, editor, La commande prédictive : Avancées et perspectives. Hermès, 2006.

    Google Scholar 

  • E. Delaleau and J. Rudolph. Control of flat systems by quasi-static feedback of generalized states. Int. J. Control, 71(5):745–765, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Demazure. Bifurcations and Catastrophes, Geometry of Solutions to Nonlinear Problems. Springer, Universitext, 2000.

    Google Scholar 

  • Th. Devos. Étude et comparaison de plusieurs lois de commande de grues. PhD thesis, Université Paris-Sud, 2009.

    Google Scholar 

  • Th. Devos and J. Lévine. A flatness-based nonlinear predictive approach for crane control. In M. Alamir and F. Allgöwer, editors, Proc. of the IFAC Conf. on Nonlinear Model Predictive Control for Fast Systems, NMPC’06, Grenoble, France, 2006.

    Google Scholar 

  • J. Dieudonné. Fondements de l’Analyse Moderne. Gauthier-Villars, Paris, 1960.

    Google Scholar 

  • B. Etkin. Dynamics of flight-Stability and control. John Wiley, 2nd edition, 1982.

    Google Scholar 

  • N. Fenichel. Geometric singular perturbation theory for ordinary differential equations. J. Diff. Equations, 31:53–98, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  • A.F. Filippov. Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, Dordrecht, Boston, London, 1988.

    Google Scholar 

  • R. Findeisen and F. Allgöwer. An introduction to nonlinear model predictive control. In Proc. 21st Benelux Meeting on Systems and Control, Veldhoven, The Netherlands, 2002.

    Google Scholar 

  • M. Fliess. Some basic structural properties of generalized linear systems. Systems & Control Letters, 15:391–396, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Fliess. A remark on Willems’ trajectory characterization of linear controllability. Systems & Control Letters, 19:43–45, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Fliess and R. Marquez. Continuous-time linear predictive control and flatness : a module-theoretic setting with examples. International Journal of Control, 73:606–623, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Fliess, J. Lévine, and P. Rouchon. A simplied approach of crane control via a generalized state-space model. In Proc. 30th IEEE Control Decision Conf., Brighton, pages 736–741, 1991.

    Google Scholar 

  • M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. Sur les systèmes non linéaires différentiellement plats. C.R. Acad. Sci. Paris, I–315:619–624, 1992a.

    Google Scholar 

  • M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. On differentially flat nonlinear systems. In Proc. IFAC-Symposium NOLCOS’92, Bordeaux, pages 408–412, 1992b.

    Google Scholar 

  • M. Fliess, J. Lévine, and P. Rouchon. A generalized state variable representation for a simplied crane description. Int. J. Control, 58:277–283, 1993.

    Article  MATH  Google Scholar 

  • M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. Flatness and defect of nonlinear systems: introductory theory and examples. Int. J. Control, 61 (6):1327–1361, 1995.

    Article  MATH  Google Scholar 

  • M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems. IEEE Trans. Automat. Control, 44(5):922–937, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  • E. Fossas and J. Franch. Linearization by prolongations: a new bound for three input systems. In Proceedings of the 14th IFAC World Congress, Beijing, 1999.

    Google Scholar 

  • J. Franch. Flatness, Tangent Systems and Flat Outputs. PhD thesis, Universitat Politècnica de Catalunya Jordi Girona, 1999.

    Google Scholar 

  • F.R. Gantmacher. Théorie des Matrices, t. I, II. Dunod, Paris, 1966.

    Google Scholar 

  • R.B. Gardner and W.F. Shadwick. The GS algorithm for exact linearization to Brunovsky normal form. IEEE. Trans. Automat. Contr., 37:224–230, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  • C. Godbillon. Géométrie Différentielle et Mécanique Analytique. Hermann, 1969.

    Google Scholar 

  • J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

  • V. Hagenmeyer and E. Delaleau. Continuous-time non-linear flatness-based predictive control: an exact feedforward linearisation setting with an induction drive example. International Journal of Control, 81(10):1645–1663, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Hilbert. Über den Begriff der Klasse von Differentialgleichungen. Math. Ann., 73:95–108, 1912. Also in Gesammelte Abhandlungen, Vol. 3, pages 81–93, Chelsea, New York, 1965.

    Article  MathSciNet  Google Scholar 

  • D. Hilbert. Mathematische probleme. Archiv für Mathematik und Physik, 1: 44–63 and 213–237, 1901. Also in Gesammelte Abhandlungen, Vol.3, pages 290–329, Chelsea, New York, 1965.

    Google Scholar 

  • M.W. Hirsch and S. Smale. Differential Equations, Dynamical Systems and Linear Algebra. Acamedic Press, New-York, 1974.

    MATH  Google Scholar 

  • M.W. Hirsch, C.C. Pugh, and M. Shub. Invariant Manifolds. Lecture Notes in Mathematics. Springer, 1977.

    Google Scholar 

  • L.R. Hunt, R. Su, and G. Meyer. Design for multi-input nonlinear systems. In R.W. Brockett, R.S. Millman, and H.J. Sussmann, editors, Differential Geometric Control Theory, pages 268–298. Birkhäuser, Boston, 1983a.

    Google Scholar 

  • L.R. Hunt, R. Su, and G. Meyer. Global transformations of nonlinear systems. IEEE Trans. Automat. Control, 28:24–31, 1983b.

    Google Scholar 

  • N. H. Ibragimov. Transformation Groups Applied to Mathematical Physics. Reidel, Boston, 1985.

    MATH  Google Scholar 

  • A. Isidori. Nonlinear Control Systems. Springer, New York, 3rd edition, 1995.

    MATH  Google Scholar 

  • B. Jakubczyk. Invariants of dynamic feedback and free systems. In Proc. ECC’93, Groningen, pages 1510–1513, 1993.

    Google Scholar 

  • B. Jakubczyk and W. Respondek. On linearization of control systems. Bull. Acad. Pol. Sci. Ser. Sci. Math., 28(9–10):517–522, 1980.

    MATH  MathSciNet  Google Scholar 

  • T. Kailath. Linear Systems. Prentice Hall, Englewood Cliffs, NJ, 1980.

    MATH  Google Scholar 

  • H. K. Khalil. Nonlinear Systems. Prentice Hall, Englewood Cliffs, NJ, 1996.

    Google Scholar 

  • B. Kiss. Planication de trajectoires et commande d’une classe de systèmes mécaniques plats et liouvilliens. PhD thesis, École des Mines de Paris, 2001.

    Google Scholar 

  • B. Kiss, J. Lévine, and Ph. Müllhaupt. Modelling, flatness and simulation of a class of cranes. Periodica Polytechnica, 43(3):215–225, 1999.

    Google Scholar 

  • B. Kiss, J. Lévine, and Ph. Müllhaupt. A simple output feedback PD controller for nonlinear cranes. In 39th IEEE Conference on Decision and Control, Sydney, Australia, 2000a.

    Google Scholar 

  • B. Kiss, J. Lévine, and Ph. Müllhaupt. Modelling and motion planning for a class of weight handling equipment. J. Systems Science, 26(4):79–92, 2000b.

    Google Scholar 

  • B. Kiss, J. Lévine, and Ph. Müllhaupt. Control of a reduced size model of US Navy crane using only motor position sensors. In A. Isidori, F. Lamnabhi-Lagarrigue, and W. Respondek, editors, Nonlinear Control in the Year 2000, volume 2, pages 1–12. Springer, 2000c.

    Google Scholar 

  • S. Kobayashi and K. Nomizu. Foundations of Differential Geometry, volume I. John Wiley & Sons, 1996.

    Google Scholar 

  • P.V. Kokotović, H.K. Khalil, and J. O’Reilly. Singular Perturbation Methods in Control: Analysis and Design. Academic Press, London, 1986.

    MATH  Google Scholar 

  • M.V. Kondratieva, A.V. Mikhalev, and E.V. Pankratiev. On Jacobi’s bound for systems of differential polynomials. Algebra, Moscow Univ. Press, Moscow, pages 79–85, 1982. in russian.

    Google Scholar 

  • A.I. Kostrikin and I.R. Shafarevich. Algebra, I., volume 11 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, New York, 1980.

    Google Scholar 

  • I. S. Krasil’shchik, V. V. Lychagin, and A. M. Vinogradov. Geometry of Jet Spaces and Nonlinear Partial Differential Equations. Gordon and Breach, New York, 1986.

    MATH  Google Scholar 

  • A.J. Krener and A. Isidori. Linearization by output injection and nonlinear observers. Systems & Control Lett., 3:47–52, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  • A.J. Krener and W. Respondek. Nonlinear observers with linear error dynamics. SIAM J. Control Optimiz., 23:197–216, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Krstić, I. Kanellakopoulos, and P. Kokotović. Nonlinear and Adaptive Control Design. Wiley, New York, 1995.

    Google Scholar 

  • J.P. LaSalle and S. Lefschetz. Stability by Lyapunov’s Direct Method With Application. Academic Press, New York, 1961.

    Google Scholar 

  • J. Lévine. Are there new industrial perspectives in the control of mechanical systems? In P.M. Frank, editor, Advances in Control, Highlights of ECC’99, pages 197–226. Springer, London, 1999.

    Google Scholar 

  • J. Lévine. Static and dynamic state feedback linearization. In A. Fossard and D. Normand-Cyrot, editors, Nonlinear Systems, volume 3, pages 93–126. Chapman & Hall, 1997.

    Google Scholar 

  • J. Lévine. On necessary and suffcient conditions for differential flatness.http://www.arxiv.org, arXiv:math.OC/0605405, 2006.

  • J. Lévine. On the synchronization of a pair of independent windshield wipers. IEEE Trans. Control Systems Technology, 12(5):787–795, 2004.

    Article  Google Scholar 

  • J. Lévine. On necessary and suffcient conditions for differential flatness. In Proc. of IFAC NOLCOS 2004 Conference, Stuttgart, 2004.

    Google Scholar 

  • J. Lévine and D.V. Nguyen. Flat output characterization for linear systems using polynomial matrices. Systems & Control Letters, 48:69–75, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Lévine and P. Rouchon. Quality control of binary distillation columns based on nonlinear aggregated models. Automatica, 27(3):463–480, 1991.

    Article  Google Scholar 

  • J. Lévine and P. Rouchon. An invariant manifold approach for robust control design and applications. In U. Helmke, R. Mennicken, and J. Saurer, editors, Systems and Networks: Mathematical Theory and Applications, Proc. MTNS-93, Regensburg, Germany, volume 2, pages 309–312. Akademie Verlag, Berlin, 1994.

    Google Scholar 

  • J. Lévine, J. Lottin, and J. C. Ponsart. A nonlinear approach to the control of magnetic bearings. IEEE Trans. Control Systems Technology, 4(5):524–544, 1996.

    Article  Google Scholar 

  • J. Lévine, P. Rouchon, G. Yuan, C. Grebogi, B.R. Hunt, E. Kostelich, E. Ott, and J. Yorke. On the control of US navy cranes. In Proc. ECC’97, Brussels, paper N. 717, 1997.

    Google Scholar 

  • A. Liapounoff. Problème Général de la Stabilité du Mouvement. Annales de la Faculté des Sciences de Toulouse, deuxième série. Edouard Privat, 1907. reprint J. Gabay, Paris, 1988.

    Google Scholar 

  • R. Marino. On the largest feedback linearizable subsystem. Systems & Control Letters, 6:345–351, 1986.

    Article  MathSciNet  Google Scholar 

  • R. Marino and P. Tomei. Nonlinear Control Design. Prentice Hall, Englewood Cliffs, NJ, 1995.

    MATH  Google Scholar 

  • Ph. Martin. Aircraft control using flatness. In Proc. CESA Multiconference, Lille, pages 194–199, 1996.

    Google Scholar 

  • Ph. Martin. Endogenous feedbacks and equivalence. In U. Helmke, R. Mennicken, and J. Saurer, editors, Systems and Networks: Mathematical Theory and Applications, Proc. MTNS-93, Regensburg, Germany, volume 2, pages 343–346. Akademie Verlag, Berlin, 1994.

    Google Scholar 

  • Ph. Martin. Contribution à l’étude des systèmes diffèrentiellement plats. PhD thesis, école des Mines de Paris, 1992.

    Google Scholar 

  • Ph. Martin and P. Rouchon. Systems without drift and flatness. In Proc. MTNS 93, Regensburg, Germany, August 1993.

    Google Scholar 

  • Ph. Martin, R.M. Murray, and P. Rouchon. Flat systems. In G. Bastin and M. Gevers, editors, Plenary Lectures and Minicourses, Proc. ECC 97, Brussels, pages 211–264, 1997.

    Google Scholar 

  • D. McLean. Automatic Flight Control Systems. Prentice Hall, 1990.

    Google Scholar 

  • D.T. McRuer, I.L. Ashkenas, and D.C. Graham. Aicraft Dynamics and Automatic Control. Princeton University Press, 1973.

    Google Scholar 

  • J. Milnor. Topology from the Differential Viewpoint. University Press of Virginia, Charlottesville, 1978.

    Google Scholar 

  • M. Morari and J.H. Lee. Model predictive control: past, present and future. Computers & Chemical Engineering, 23:667–682, 1999.

    Article  Google Scholar 

  • P. MÜllhaupt. Introduction à l’Analyse et à la Commande des Systèmes Non Linéaires. Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland, 2009.

    Google Scholar 

  • P. MÜllhaupt, B. Srinivasan, J. Lévine, and D. Bonvin. A toy more difficult to control than the real thing. In Proc. ECC’97, Brussels, July 1997.

    Google Scholar 

  • P. MÜllhaupt, B. Srinivasan, J. Lévine, and D. Bonvin. Cascade control of the toycopter. In Proc. ECC’99, Karslruhe, 1999.

    Google Scholar 

  • P. MÜllhaupt, B. Srinivasan, J. Lévine, and D. Bonvin. Control of the toycopter using a flat approximation. IEEE Trans. Control Systems Technology, 16(5):882–896, 2008.

    Article  Google Scholar 

  • Ju.I. Neĭmark and N.A. Fufaev. Dynamics of Nonholonomic Systems. American Mathematical Society, Providence, Rhode Island, 1972.

    MATH  Google Scholar 

  • H. Nijmeijer and A.J. van der Schaft. Nonlinear Dynamical Control Systems. Springer, New York, 1990.

    MATH  Google Scholar 

  • F. Ollivier. Standard bases of differential ideals. In Proceedings of AAECC8, volume 508 of Lecture Notes In Computer Science, pages 304–321. Springer, 1990.

    Google Scholar 

  • F. Ollivier and S. Brahim. La borne de Jacobi pour une diffété dénie par un système quasi régulier (Jacobi’s bound for a diffiety dened by a quasiregular system). Comptes rendus Mathematique, 345(3):139–144, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  • P.J. Olver. Equivalence, Invariants, and Symmetry. Cambridge University Press, 1995.

    Google Scholar 

  • P. S. Pereira da Silva. Flatness of nonlinear control systems : a Cartan-Kähler approach. In Proc. Mathematical Theory of Networks and Systems (MTNS’2000), Perpignan, pages 1–10, 2000.

    Google Scholar 

  • P.S. Pereira da Silva and C. Corrêa Filho. Relative flatness and flatness of implicit systems. SIAM J. Control and Optimization, 39(6):1929–1951, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  • N. Petit, Y. Creff, L. Lemaire, and P. Rouchon. Minimum time constrained control of acid strength on a sulfuric acid alkylation unit. Chemical Engineering Science, 56:2767–2774, 2001.

    Article  Google Scholar 

  • F. Pham. Géométrie et Calcul Différentiel sur les Variétés. InterEditions, Paris, 1992.

    MATH  Google Scholar 

  • H. Poincaré. Sur l’uniformisation des fonctions analytiques. Acta Mathematica, 31:1–63, 1907. Also in Œuvres de Henri Poincaré, t. 4, pages 70–139, Gauthier-Villars, Paris, 1950.

    Article  MATH  Google Scholar 

  • J.W. Polderman and J.C. Willems. Introduction to Mathematical System Theory: a Behavioral Approach. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  • J.-B. Pomet. A differential geometric setting for dynamic equivalence and dynamic linearization. In B. Jakubczyk, W. Respondek, and T. Rzežzuchowski, editors, Geometry in Nonlinear Control and Differential Inclusions, pages 319–339. Banach Center Publications, Warsaw, 1993.

    Google Scholar 

  • J.-B. Pomet. On dynamic feedback linearization of four-dimensional affine control systems with two inputs. ESAIM-COCV, 1997. http://www.emath.fr/Maths/Cocv/Articles/articleEng.html.

  • J.B. Pomet, C. Moog, and E. Aranda. A non-exact Brunovsky form and dynamic feedback linearization. In Proc. 31st. IEEE Conf. Decision Cont., pages 2012–2017, 1992.

    Google Scholar 

  • J.F. Pommaret. Partial Differential Control Theory. Kluwer academic publishers, 2001.

    Google Scholar 

  • J.F. Pommaret and A. Quadrat. Localization and parametrization of linear multidimensional control systems. Systems & Control Letters, 37:247–269, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  • L. Pontriaguine. Équations différentielles Ordinaires. MIR, Moscou, 1975.

    Google Scholar 

  • M. Rathinam and R.M. Murray. Conguration flatness of Lagrangian systems underactuated by one control. SIAM J. Control and Optimization, 36(1): 164–179, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • J. F. Ritt. Jacobi’s problem on the order of a system of differential equations. Annals of Mathematics, 36:303–312, 1935.

    Article  MathSciNet  Google Scholar 

  • H.H. Rosenbrock. Multivariable and State-Space Theory. Wiley, New York, 1970.

    MATH  Google Scholar 

  • P. Rouchon. Necessary condition and genericity of dynamic feedback linearization. J. Math. Systems Estim. Control, 4(2):257–260, 1994.

    MATH  MathSciNet  Google Scholar 

  • J. Rudolph. Flatness based control of distributed parameter systems. Shaker Verlag, Aachen, 2003.

    Google Scholar 

  • J. Rudolph, J. Winkler, and F. Woittenek. Flatness based control of distributed parameter systems: examples and computer exercises from various technological domains. Shaker Verlag, Aachen, 2003.

    Google Scholar 

  • D. Ruelle. Elements of Differentiable Dynamics and Bifurcation Theory. Academic Press, 1989.

    Google Scholar 

  • S. Sastry. Nonlinear Systems, Analysis, Stability and Control. Springer, New York, 1999.

    MATH  Google Scholar 

  • J.A. Saunders and F. Verhulst. Averaging Methods in Nonlinear Dynamical Systems. Springer, 1987.

    Google Scholar 

  • K. Schlacher and M. Schöoberl. Construction of at outputs by reduction and elimination. In Proc. 7th IFAC Symposium on Nonlinear Control Systems, Pretoria, South Africa, pages 666–671, August 2007.

    Google Scholar 

  • W.F. Shadwick. Absolute equivalence and dynamic feedback linearization. Systems Control Letters, 15:35–39, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Sira-Ramirez and S.K. Agrawal. Differentially at systems. Marcel Dekker, New York, 2004.

    Google Scholar 

  • J.J.E. Slotine and W. Li. Applied Nonlinear Control. Prentice Hall, Englewood Cliffs, NJ, 1991.

    MATH  Google Scholar 

  • W.M. Sluis. A necessary condition for dynamic feedback linearization. Systems Control Letters, 21:277–283, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  • W.M. Sluis and D.M. Tilbury. A bound on the number of integrators needed to linearize a control system. Systems & Control Letters, 29(1):43–50, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Sommer. Control design for multivariable non-linear time-varying systems. Int. J. Control, 31:883–891, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  • E.D. Sontag. Mathematical Control Theory, Deterministic Finite Dimensional Systems. Springer, New York, 2nd edition, 1998.

    MATH  Google Scholar 

  • H.J. Sussmann. A general theorem on local controllability. SIAM J. Control and Optimiz., 25:158–194, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Tannenbaum. Invariance and System Theory: Algebraic and Geometric Aspects. Springer, New York, 1980.

    Google Scholar 

  • R Thom. Stabilité Structurelle et Morphogénèse. InterEdition, Paris, 2nd edition, 1977.

    Google Scholar 

  • A. Tikhonov, A. Vasil’eva, and A. Sveshnikov. Differential Equations. Springer, New York, 1980.

    MATH  Google Scholar 

  • H.L. Trentelman. On at systems, behaviors and observable image representations. Systems & Control Letters, 21:51–55, 2004.

    Article  MathSciNet  Google Scholar 

  • M. van Nieuwstadt, M. Rathinam, and R.M. Murray. Differential flatness and absolute equivalence. In Proc. 33th IEEE Conf. Decision Control, Lake Buena Vista, Fl., pages 326–332, 1994.

    Google Scholar 

  • M. van Nieuwstadt, M. Rathinam, and R.M. Murray. Differential flatness and absolute equivalence of nonlinear control systems. SIAM J. Control Optim., 36(4):1225–1239, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Vidyasagar. Nonlinear Systems Analysis. Prentice Hall, Englewood Cliffs, NJ, 2nd edition, 1993.

    MATH  Google Scholar 

  • J. von Löowis, J. Rudolph, J. Thiele, and F. Urban. Flatness-based trajectory tracking control of a rotating shaft. In 7th International Symposium on Magnetic Bearings, Züurich, pages 299–304, 2000.

    Google Scholar 

  • M. Vukobratović and R. Stojić. Modern Aircraft Flight Control. Springer-Verlag, 1988.

    Google Scholar 

  • J.C. Wanner. Dynamique du vol et pilotage des avions. Technical report, école Nationale Supérieure de l’Aéronautique et de l’Espace, Toulouse, France, 1984.

    Google Scholar 

  • E.T. Whittaker. A Treatise on the Analytical Dynamics of Particules and Rigid Bodies. Cambridge University Press, Cambridge, 4th edition, 1937.

    Google Scholar 

  • W.A.Wolovich. Linear Multivariable Systems, volume 11 of Series in Applied Mathematical Sciences. Springer, New York, 1974.

    Google Scholar 

  • W.M. Wonham. Linear Multivariable Control: a Geometric Approach. Springer, 1974.

    Google Scholar 

  • X.H. Xia and W.B. Gao. Nonlinear observer design by observer error linearization. SIAM J. Control Optimiz., 27:199–216, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  • V.V. Zharinov. Geometrical Aspect of Partial Differential Equations. World Scientic, Singapore, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Lévine .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lévine, J. (2009). Automatic Flight Control Systems. In: Analysis and Control of Nonlinear Systems. Mathematical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00839-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00839-9_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00838-2

  • Online ISBN: 978-3-642-00839-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics