Skip to main content

Self-optimizing Robust Nonlinear Model Predictive Control

  • Chapter
Nonlinear Model Predictive Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 384))

Abstract

This paper presents a novel method for designing robust MPC schemes that are self-optimizing in terms of disturbance attenuation. The method employs convex control Lyapunov functions and disturbance bounds to optimize robustness of the closed-loop system on-line, at each sampling instant - a unique feature in MPC. Moreover, the proposed MPC algorithm is computationally efficient for nonlinear systems that are affine in the control input and it allows for a decentralized implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. Automatica 36(6), 789–814 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Lazar, M., Heemels, W.P.M.H., Bemporad, A., Weiland, S.: Discrete-time non-smooth NMPC: Stability and robustness. In: Assessment and Future Directions of NMPC. LNCIS, vol. 358, pp. 93–103. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Magni, L., Scattolini, R.: Robustness and robust design of MPC for nonlinear discrete-time systems. In: Assessment and Future Directions of NMPC. LNCIS, vol. 358, pp. 239–254. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Mayne, D.Q., Kerrigan, E.C.: Tube-based robust nonlinear model predictive control. In: 7th IFAC Symposium on Nonlinear Control Systems, Pretoria, pp. 110–115 (2007)

    Google Scholar 

  5. Raković, S.V.: Set theoretic methods in model predictive control. In: Proc. of the 3rd Int. Workshop on Assessment and Future Directions of NMPC, Pavia, Italy (2008)

    Google Scholar 

  6. Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Transactions on Automatic Control AC-34, 435–443 (1989)

    Article  MathSciNet  Google Scholar 

  7. Sontag, E.D.: Stability and stabilization: Discontinuities and the effect of disturbances. In: Clarke, F.H., Stern, R.J. (eds.) Nonlinear Analysis, Differential Equations, and Control, pp. 551–598. Kluwer, Dordrecht (1999)

    Google Scholar 

  8. Jiang, Z.-P., Wang, Y.: Input-to-state stability for discrete-time nonlinear systems. Automatica 37, 857–869 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kokotović, P., Arcak, M.: Constructive nonlinear control: A historical perspective. Automatica 37(5), 637–662 (2001)

    MATH  MathSciNet  Google Scholar 

  10. Lazar, M.: Model predictive control of hybrid systems: Stability and robustness, PhD Thesis, Eindhoven University of Technology, The Netherlands (2006)

    Google Scholar 

  11. Lazar, M., Muñoz de la Peña, D., Heemels, W.P.M.H., Alamo, T.: On input-to-state stability of min-max MPC. Systems & Control Letters 57, 39–48 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Wayne, S.U.: Mathematical Dept., Coffee Room. Every convex function is locally Lipschitz, The American Mathematical Monthly 79(10), 1121–1124 (1972)

    Google Scholar 

  13. Bertsekas, D.P.: Nonlinear programming, 2nd edn. Athena Scientific (1999)

    Google Scholar 

  14. Lazar, M., Heemels, W.P.M.H., Weiland, S., Bemporad, A.: Stabilizing model predictive control of hybrid systems. IEEE Transactions on Automatic Control 51(11), 1813–1818 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lazar, M., Heemels, W.P.M.H., Jokic, A. (2009). Self-optimizing Robust Nonlinear Model Predictive Control. In: Magni, L., Raimondo, D.M., Allgöwer, F. (eds) Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences, vol 384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01094-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01094-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01093-4

  • Online ISBN: 978-3-642-01094-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics