Skip to main content

Monitoring of the Mechanical Behaviour of the Respiratory System During Controlled Mechanical Ventilation

  • Chapter
  • First Online:
Pediatric and Neonatal Mechanical Ventilation

Abstract

Most modern mechanical ventilators offer a multitude of graphics and numerics allowing to monitor respiratory mechanics during ongoing mechanical ventilation. The information provided by these integrated respiration monitors is first to provide the information necessary to optimise ventilator settings in an individual patient and second to document disease evolution over time or in response to therapeutic interventions. Furthermore, measuring respiratory mechanics during ventilation can allow developing automatic adaptation algorithms of ventilator settings. However, to do this either by manual or by automatic ventilator settings adjustment, a thorough understanding not only of basic respiratory mechanics during mechanical ventilation is needed but also a good understanding what graphs and numbers can tell the physician or respiratory therapist at bedside. Graphic monitoring shows graphs generated from the signals of airway pressure (as usually measured at the airway opening, e.g. endotracheal tube or face mask connection), gas flow and volume change of the respiratory system. Volume is in fact measured by the time-integral of gas flow. It must be noted also that all the measurements derived from the airway opening pressure include the resistance of the artificial airway (i.e. endotracheal tube) as part of the respiratory system resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some commercially available ventilators use the term high-frequency minute ventilation (MVHFV). This is interchangeable with DCO2.

References

  • Adams AB, Cakar N, Marini JJ (2001) Static and dynamic pressure-volume curves reflect different aspects of respiratory system mechanics in experimental acute respiratory distress syndrome. Respir Care 46(7):686–693

    CAS  PubMed  Google Scholar 

  • American Thoracic Society/European Respiratory Society (1993) Respiratory mechanics in infants: physiologic evaluation in health and disease. Am Rev Respir Dis 147:474–496

    Article  Google Scholar 

  • Berger TM, Stocker M (2004) [Ventilation of newborns and infants]. Anaesthesist 53(8):690–701

    Article  CAS  PubMed  Google Scholar 

  • Bond DM, Froese AB (1993) Volume recruitment maneuvers are less deleterious than persistent low lung volumes in the atelectasis-prone rabbit lung during high-frequency oscillation. Crit Care Med 21(3):402–412

    Article  CAS  PubMed  Google Scholar 

  • Bone RC (1976) Diagnosis of causes for acute respiratory distress by pressure-volume curves. Chest 70(6):740–746

    Article  CAS  PubMed  Google Scholar 

  • Boynton BR, Hammond MD, Fredberg JJ, Buckley BG, Villanueva D, Frantz ID III (1989) Gas exchange in healthy rabbits during high-frequency oscillatory ventilation. J Appl Physiol 66(3):1343–1351

    CAS  PubMed  Google Scholar 

  • Breen PH, Ali J, Wood LD (1984) High-frequency ventilation in lung edema: effects on gas exchange and perfusion. J Appl Physiol 56(1):187–195

    CAS  PubMed  Google Scholar 

  • Byford LJ, Finkler JH, Froese AB (1988) Lung volume recruitment during high-frequency oscillation in atelectasis-prone rabbits. J Appl Physiol 64(4):1607–1614

    CAS  PubMed  Google Scholar 

  • Chan V, Greenough A (1994) The effect of frequency on carbon dioxide levels during high frequency oscillation. J Perinat Med 22(2):103–106

    Article  CAS  PubMed  Google Scholar 

  • Chan V, Greenough A, Milner AD (1993) The effect of frequency and mean airway pressure on volume delivery during high-frequency oscillation. Pediatr Pulmonol 15(3):183–186

    Article  CAS  PubMed  Google Scholar 

  • Chang HK (1984) Mechanisms of gas transport during ventilation by high-frequency oscillation. J Appl Physiol 56(3):553–563

    CAS  PubMed  Google Scholar 

  • Courtney SE, Weber KR, Spohn WA, Malin SW, Bender CV, Gotshall RW (1990) Measurement of tidal volume using a pneumotachometer during high-frequency oscillation. Crit Care Med 18(6):651–653

    Article  CAS  PubMed  Google Scholar 

  • D’Angelo E, Prandi E, Tavola M, Calderini E, Milic-Emili J (1994) Chest wall interrupter resistance in anesthetized paralyzed humans. J Appl Physiol 77(2):883–887

    PubMed  Google Scholar 

  • De Jaegere A, van Veenendaal MB, Michiels A, van Kaam AH (2006) Lung recruitment using oxygenation during open lung high-frequency ventilation in preterm infants. Am J Respir Crit Care Med 174(6):639–645

    Article  PubMed  Google Scholar 

  • Dimitriou G, Greenough A, Kavvadia V, Laubscher B, Milner AD (1998) Volume delivery during high frequency oscillation. Arch Dis Child Fetal Neonatal Ed 78(2):F148–F150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Escolar JD, Escolar A (2004) Lung hysteresis: a morphological view. Histol Histopathol 19(1):159–166

    CAS  PubMed  Google Scholar 

  • Escolar JD, Escolar MA, Guzman J, Roques M (2002) Pressure volume curve and alveolar recruitment/de-recruitment. A morphometric model of the respiratory cycle. Histol Histopathol 17(2):383–392

    CAS  PubMed  Google Scholar 

  • Falke KJ, Pontoppidan H, Kumar A, Leith DE, Geffin B, Laver MB (1972) Ventilation with end-expiratory pressure in acute lung disease. J Clin Invest 51(9):2315–2323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fletcher ME, Stack C, Ewart M, Davies CJ, Ridley S, Hatch DJ, Stocks J (1991) Respiratory compliance during sedation, anesthesia, and paralysis in infants and young children. J Appl Physiol 70:1977–1982

    CAS  PubMed  Google Scholar 

  • Froese AB (1997) High-frequency oscillatory ventilation for adult respiratory distress syndrome: let’s get it right this time! Crit Care Med 25(6):906–908

    Article  CAS  PubMed  Google Scholar 

  • Froese AB, Kinsella JP (2005) High-frequency oscillatory ventilation: lessons from the neonatal/pediatric experience. Crit Care Med 33(3 Suppl):S115–S121

    Article  PubMed  Google Scholar 

  • Gappa M, Colin AA, Goetz I, Stocks J (2001) ERS/ATS Task Force on standards for infant respiratory function testing. European Respiratory Society/American Thoracic Society. Passive respiratory mechanics: the occlusion techniques. Eur Respir J 17:141–148

    Article  CAS  PubMed  Google Scholar 

  • Gattinoni L, Pesenti A, Caspani ML, Pelizzola A, Mascheroni D, Marcolin R et al (1984) The role of total static lung compliance in the management of severe ARDS unresponsive to conventional treatment. Intensive Care Med 10(3):121–126

    Article  CAS  PubMed  Google Scholar 

  • Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A (1998) Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Crit Care Med 158(1):3–11

    Article  CAS  PubMed  Google Scholar 

  • Gerstmann DR, Fouke JM, Winter DC, Taylor AF, de Lemos RA (1990) Proximal, tracheal, and alveolar pressures during high-frequency oscillatory ventilation in a normal rabbit model. Pediatr Res 28(4):367–373

    Article  CAS  PubMed  Google Scholar 

  • Goddon S, Fujino Y, Hromi JM, Kacmarek RM (2001) Optimal mean airway pressure during high-frequency oscillation: predicted by the pressure-volume curve. Anesthesiology 94(5):862–869

    Article  CAS  PubMed  Google Scholar 

  • Hager DN, Fuld M, Kaczka DW, Fessler HE, Brower RG, Simon BA (2006) Four methods of measuring tidal volume during high-frequency oscillatory ventilation. Crit Care Med 34(3):751–757

    Article  PubMed  Google Scholar 

  • Hager DN, Fessler HE, Kaczka DW, Shanholtz CB, Fuld MK, Simon BA et al (2007) Tidal volume delivery during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care Med 35(6):1522–1529

    Article  PubMed  Google Scholar 

  • Hammer J, Numa A, Newth CJ (1998) Total lung capacity by N2 washout from high and low lung volumes in ventilated infants and children. Am J Respir Crit Care Med 158(2):526–531

    Article  CAS  PubMed  Google Scholar 

  • Hatcher D, Watanabe H, Ashbury T, Vincent S, Fisher J, Froese A (1998) Mechanical performance of clinically available, neonatal, high-frequency, oscillatory-type ventilators. Crit Care Med 26(6):1081–1088

    Article  CAS  PubMed  Google Scholar 

  • Heldt GP (1994) The mechanics of breathing: developmental aspects and practical applications. In: Boynton BR, Carlo WA, Jobe AH (eds) New therapies for neonatal respiratory failure: a physiological approach, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Henzler D, Pelosi P, Dembinski R, Ullmann A, Mahnken AH, Rossaint R et al (2005) Respiratory compliance but not gas exchange correlates with changes in lung aeration after a recruitment maneuver: an experimental study in pigs with saline lavage lung injury. Crit Care 9:R471–R482

    Article  PubMed Central  PubMed  Google Scholar 

  • Hermle G, Mols G, Zugel A, Benzing A, Lichtwarck-Aschoff M, Geiger K et al (2002) Intratidal compliance-volume curve as an alternative basis to adjust positive end-expiratory pressure: a study in isolated perfused rabbit lungs. Crit Care Med 30(7):1589–1597

    Article  PubMed  Google Scholar 

  • Hickling KG (2001) Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure: a mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med 163(1):69–78

    Article  CAS  PubMed  Google Scholar 

  • Jonson B, Richard JC, Straus C, Mancebo J, Lemaire F, Brochard L (1999) Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159(4 Pt 1):1172–1178

    Article  CAS  PubMed  Google Scholar 

  • Kamitsuka MD, Boynton BR, Villanueva D, Vreeland PN, Frantz ID III (1990) Frequency, tidal volume, and mean airway pressure combinations that provide adequate gas exchange and low alveolar pressure during high frequency oscillatory ventilation in rabbits. Pediatr Res 27(1):64–69

    Article  CAS  PubMed  Google Scholar 

  • Karason S, Sondergaard S, Lundin S, Wiklund J, Stenqvist O (2000) Evaluation of pressure/volume loops based on intratracheal pressure measurements during dynamic conditions. Acta Anaesthesiol Scand 44(5):571–577

    Article  CAS  PubMed  Google Scholar 

  • Katier N, Uiterwaal CS, de Jong BM, Kimpen JL, van der Ent CK (2005) Feasibility and variability of neonatal and infant lung function measurement using the single occlusion technique. Chest 128:1822–1829

    Article  PubMed  Google Scholar 

  • Kugelman A, Keens TG, deLemos R, Durand M (1995) Comparison of dynamic and passive measurements of respiratory mechanics in ventilated newborn infants. Pediatr Pulmonol 20:258–264

    Article  CAS  PubMed  Google Scholar 

  • Lachmann B, Berggren P, Curstedt T, Grossmann G, Robertson B (1982) Combined effects of surfactant substitution and prolongation of inspiration phase in artificially ventilated premature newborn rabbits. Pediatr Res 16(11):921–927

    Article  CAS  PubMed  Google Scholar 

  • Lanteri CJ, Kano S, Nicolai T, Sly PD (1995) Measurement of dynamic respiratory mechanics in neonatal and pediatric intensive care: the multiple linear regression technique. Pediatr Pulmonol 19:29–45

    Article  CAS  PubMed  Google Scholar 

  • Le Souef PN, England SJ, Bryan AC (1984) Passive respiratory mechanics in newborns and children. Am Rev Respir Dis 129:552–556

    Google Scholar 

  • Le Souef PN, Hughes DM, Landau LI (1986) Effect of compression pressure on forced expiratory flow in infants. J Appl Physiol 61:1639–1646

    PubMed  Google Scholar 

  • Lu Q, Vieira SR, Richecoeur J, Puybasset L, Kalfon P, Coriat P et al (1999) A simple automated method for measuring pressure-volume curves during mechanical ventilation. Am J Respir Crit Care Med 159(1):275–282

    Article  CAS  PubMed  Google Scholar 

  • Maggiore SM, Richard JC, Brochard L (2003) What has been learnt from P/V curves in patients with acute lung injury/acute respiratory distress syndrome. Eur Respir J Suppl 42:22s–26s

    Article  CAS  PubMed  Google Scholar 

  • Maisch S, Reissmann H, Fuellekrug B, Wiesmann D, Rutkowski T, Tusman G et al (2008) Compliance and dead space fraction indicate an optimal level of positive end-expiratory pressure after recruitment in anesthetized patients. Crit Care Trauma 106(1):175–181

    Google Scholar 

  • Marik PE, Varon J, Fromm R Jr (2002) The management of acute severe asthma. J Emerg Med 23:257–268

    Article  PubMed  Google Scholar 

  • Matamis D, Lemaire F, Harf A, Brun-Buisson C, Ansquer JC, Atlan G (1984) Total respiratory pressure-volume curves in the adult respiratory distress syndrome. Chest 86(1):58–66

    Article  CAS  PubMed  Google Scholar 

  • McCulloch PR, Forkert PG, Froese AB (1988) Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant-deficient rabbits. Am Rev Respir Dis 137(5):1185–1192

    Article  CAS  PubMed  Google Scholar 

  • Mead J, Whittenberger JL (1953) Physical properties of human lungs measured during spontaneous respiration. J Appl Physiol 5:779–796

    Google Scholar 

  • Miedema M, de Jongh FH, Frerichs I, van Veenendaal MB, van Kaam AH (2012) The effect of airway pressure and oscillation amplitude on ventilation in pre-term infants. Eur Respir J 40(2):479–484

    Article  PubMed  Google Scholar 

  • Mills JF (2003) Optimising mean airway pressure during high frequency oscillatory ventilation. University of Melbourne, Melbourne

    Google Scholar 

  • Nicolai T, Lanteri C, Freezer N, Sly PD (1991) Non-invasive determination of alveolar pressure during mechanical ventilation. Eur Respir J 4:1275–1283

    CAS  PubMed  Google Scholar 

  • Oddo M, Feihl F, Schaller MD, Perret C (2006) Management of mechanical ventilation in acute severe asthma: practical aspects. Intensive Care Med 232:501–510

    Article  Google Scholar 

  • Peslin R, Gallina C, Saunier C, Duvivier C (1994) Fourier analysis versus multiple linear regression to analyse pressure-flow data during artificial ventilation. Eur Respir J 7:2241–2245

    Article  CAS  PubMed  Google Scholar 

  • Pfenninger J, Aebi C, Bachmann D, Wagner BP (1992) Lung mechanics and gas exchange in ventilated preterm infants during treatment of hyaline membrane disease with multiple doses of artificial surfactant (Exosurf). Pediatr Pulmonol 14(1):10–15

    Article  CAS  PubMed  Google Scholar 

  • Pillow JJ, Sly PD, Hantos Z, Bates JH (2002) Dependence of intrapulmonary pressure amplitudes on respiratory mechanics during high-frequency oscillatory ventilation in preterm lambs. Pediatr Res 52(4):538–544

    Article  PubMed  Google Scholar 

  • Pillow JJ, Sly PD, Hantos Z (2004) Monitoring of lung volume recruitment and derecruitment using oscillatory mechanics during high-frequency oscillatory ventilation in the preterm lamb. Pediatr Crit Care Med 5(2):172–180

    Article  PubMed  Google Scholar 

  • Ranieri VM, Giuliani R, Fiore T, Dambrosio M, Milic-Emili J (1994) Volume-pressure curve of the respiratory system predicts effects of PEEP in ARDS: “occlusion” versus “constant flow” technique. Am J Respir Crit Care Med 149(1):19–27

    Article  CAS  PubMed  Google Scholar 

  • Ranieri VM, Zhang H, Mascia L, Aubin M, Lin CY, Mullen JB et al (2000) Pressure–time curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology 93(5):1320–1328

    Article  CAS  PubMed  Google Scholar 

  • Rimensberger PC, Bryan AC (1999) Measurement of functional residual capacity in the critically ill. Relevance for the assessment of respiratory mechanics during mechanical ventilation. Intensive Care Med 25(5):540–542

    Article  CAS  PubMed  Google Scholar 

  • Rimensberger PC, Cox PN, Frndova H, Bryan AC (1999) The open lung during small tidal volume ventilation: concepts of recruitment and “optimal” positive end-expiratory pressure. Crit Care Med 27(9):1946–1952

    Article  CAS  PubMed  Google Scholar 

  • Rimensberger PC, Pache JC, McKerlie C, Frndova H, Cox PN (2000a) Lung recruitment and lung volume maintenance: a strategy for improving oxygenation and preventing lung injury during both conventional mechanical ventilation and high-frequency oscillation. Intensive Care Med 26(6):745–755

    Article  CAS  PubMed  Google Scholar 

  • Rimensberger PC, Beghetti M, Hanquinet S, Berner M (2000b) First intention high-frequency oscillation with early lung volume optimization improves pulmonary outcome in very low birth weight infants with respiratory distress syndrome. Pediatrics 105(6):1202–1208

    Article  CAS  PubMed  Google Scholar 

  • Rossing TH, Slutsky AS, Lehr JL, Drinker PA, Kamm R, Drazen JM (1981) Tidal volume and frequency dependence of carbon dioxide elimination by high-frequency ventilation. N Engl J Med 305(23):1375–1379

    Article  CAS  PubMed  Google Scholar 

  • Rouby JJ, Lu Q, Goldstein I (2002) Selecting the right level of positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 165(8):1182–1186

    Article  PubMed  Google Scholar 

  • Rousselot JM, Peslin R, Duvivier C (1992) Evaluation of the multiple linear regression method to monitor respiratory mechanics in ventilated neonates and young children. Pediatr Pulmonol 13:161–168

    Article  CAS  PubMed  Google Scholar 

  • Scalfaro P, Pillow JJ, Sly PD, Cotting J (2001) Reliable tidal volume estimates at the airway opening with an infant monitor during high-frequency oscillatory ventilation. Crit Care Med 29(10):1925–1930

    Article  CAS  PubMed  Google Scholar 

  • Slutsky AS, Kamm RD, Rossing TH, Loring SH, Lehr J, Shapiro AH et al (1981) Effects of frequency, tidal volume, and lung volume on CO2 elimination in dogs by high frequency (2–30 Hz), low tidal volume ventilation. J Clin Invest 68(6):1475–1484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stahl CA, Moller K, Schumann S, Kuhlen R, Sydow M, Putensen C et al (2006) Dynamic versus static respiratory mechanics in acute lung injury and acute respiratory distress syndrome. Crit Care Med 34(8):2090–2098

    Article  PubMed  Google Scholar 

  • Stocks J, Sly PD, Tepper RS, Morgan DL (1996) Infant respiratory function testing. Wiley-Liss, New York

    Google Scholar 

  • Suarez-Sipmann F, Bohm SH, Tusman G, Pesch T, Thamm O, Reissmann H et al (2007) Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med 35(1):214–221

    Article  PubMed  Google Scholar 

  • Suter PM, Fairley B, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292(6):284–289

    Article  CAS  PubMed  Google Scholar 

  • Suter PM, Fairley HB, Isenberg MD (1978) Effect of tidal volume and positive end-expiratory pressure on compliance during mechanical ventilation. Chest 73:158–162

    Article  CAS  PubMed  Google Scholar 

  • Sydow M, Burchardi H, Zinserling J, Ische H, Crozier TA, Weyland W (1991) Improved determination of static compliance by automated single volume steps in ventilated patients. Intensive Care Med 17(2):108–114

    Article  CAS  PubMed  Google Scholar 

  • Sydow M, Burchardi H, Zinserling J, Crozier TA, Denecke T, Zielmann S (1993) Intrinsic PEEP determined by static pressure-volume curves–application of a novel automated occlusion method. Intensive Care Med 19(3):166–171

    Article  CAS  PubMed  Google Scholar 

  • Tingay DG, Mills JF, Morley CJ, Pellicano A, Dargaville PA (2006) The deflation limb of the pressure-volume relationship in infants during high-frequency ventilation. Am J Respir Crit Care Med 173(4):414–420

    Article  PubMed  Google Scholar 

  • Tingay DG, Mills JF, Morley CJ, Pellicano A, Dargaville PA (2013) Indicators of optimal lung volume during high-frequency oscillatory ventilation in infants*. Crit Care Med 41(1):232–239

    Article  Google Scholar 

  • Tooley WH, Clements JA, Muramatsu K, Brown CL, Schlueter MA (1987) Lung function in prematurely delivered rabbits treated with a synthetic surfactant. Am Rev Respir Dis 136(3):651–656

    Article  CAS  PubMed  Google Scholar 

  • van Kaam AH (2013) Bedside parameters to optimize lung volume during high-frequency oscillatory ventilation. Crit Care Med 41(1):365–366

    Article  PubMed  Google Scholar 

  • Walsh MC, Carlo WA (1988) Sustained inflation during HFOV improves pulmonary mechanics and oxygenation. J Appl Physiol 65(1):368–372

    CAS  PubMed  Google Scholar 

  • Watson JW, Jackson AC (1984) CO2 elimination as a function of frequency and tidal volume in rabbits during HFO. J Appl Physiol 57(2):354–359

    CAS  PubMed  Google Scholar 

  • Wood B, Karna P, Adams A (2002) Specific compliance and gas exchange during high-frequency oscillatory ventilation. Crit Care Med 30(7):1523–1527

    Article  PubMed  Google Scholar 

  • Wright K, Lyrene RK, Truog WE, Standaert TA, Murphy J, Woodrum DE (1981) Ventilation by high-frequency oscillation in rabbits with oleic acid lung disease. J Appl Physiol 50(5):1056–1060

    CAS  PubMed  Google Scholar 

  • Yamada Y, Venegas JG, Strieder DJ, Hales CA (1986) Effects of mean airway pressure on gas transport during high-frequency ventilation in dogs. J Appl Physiol 61(5):1896–1902

    CAS  PubMed  Google Scholar 

  • Zimova-Herknerova M, Plavka R (2006) Expired tidal volumes measured by hot-wire anemometer during high-frequency oscillation in preterm infants. Pediatr Pulmonol 41(5):428–433

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. Rimensberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rimensberger, P.C., Schulzke, S.M., Tingay, D., von Ungern-Sternberg, B.S. (2015). Monitoring of the Mechanical Behaviour of the Respiratory System During Controlled Mechanical Ventilation. In: Rimensberger, P. (eds) Pediatric and Neonatal Mechanical Ventilation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01219-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01219-8_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01218-1

  • Online ISBN: 978-3-642-01219-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics