Skip to main content

Respiratory Support in Developing Countries Where Resources Are Limited

  • Chapter
  • First Online:
  • 4929 Accesses

Abstract

The range of means for haemoglobin–oxygen pulsed saturation (SpO2) at sea level is 97–99 %, with the lower limits (mean, 2 SD) being 94 % (Lozano 2001). Therefore, the normal range at sea level is 94–100 %. The normal range of SpO2 becomes progressively lower in populations living in mountainous regions because of lower PaO2 at higher altitude (see Fig. 20.1) (Lozano 2001). This was estimated using data from 16 studies in children outside the neonatal period. The continuous line predicts the level of SpO2 below which oxygen should be given at different altitudes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ayieko P, English M (2006) In children aged 2–59 months with pneumonia, which clinical signs best predict hypoxaemia? J Trop Pediatr 52(5):307–310

    Article  PubMed  Google Scholar 

  • Comer AM, Perry CM, Figgit DP (2001) Caffeine citrate: a review of its use in apnea of prematurity. Paediatr Drugs 3(1):61–79

    Article  CAS  PubMed  Google Scholar 

  • Duke T (2003) Hypoxaemia in developing countries. Arch Dis Child 88:365

    Article  PubMed Central  Google Scholar 

  • Duke T, Frank D, Mgone J (2000) Hypoxaemia in children with severe pneumonia in Papua New Guinea. Int J Tuberg Lung Dis 5(6):511–519

    Google Scholar 

  • Duke T, Blaschke AJ, Sialis S, Bonkowsky JL (2002a) Hypoxaemia in acute respiratory and non-respiratory illness in neonates and children in a developing country. Arch Dis Child 86:108–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duke T, Poka H, Frank D, Michael A, Mgone J, Wal T (2002b) Chloramphenicol versus benzylpenicillin and gentamicin for the treatment of severe pneumonia in children in Papua New Guinea: a randomised trial. Lancet 359:474–480

    Article  CAS  PubMed  Google Scholar 

  • Frey B, Shann F (2003) Oxygen administration in infants. Arch Dis Child Fetal Neonatal Ed 88:F84–F88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frey B, McQuillan PJ, Shann F, Freezer N (2001) Nasopharyngeal oxygen therapy produces positive end-expiratory pressure in infants. Eur J Pediatr 160:556–560

    Article  CAS  PubMed  Google Scholar 

  • Henderson-Smart DJ, Subramaniam P, Davis PG (2001) Continuous positive airway pressure versus theophylline for apnae in preterm infants. Cochrane Database Syst Rev (4):CD001072

    Google Scholar 

  • Koyamaibole L, Kado J, Qovu JD, Colquhourn S, Duke T (2006) An evaluation of bubble-CPAP in a neonatal unit in a developing country: effective respiratory support that can be applied by nurses. J Trop Pediatr 52(4):249–253; Epub Dec 2, 2005

    Google Scholar 

  • Laman M, Ripa P, Vince J, Tefuarani N (2005) Can clinical signs predict hypoxaemia in Papua New Guinean children with moderate and severe pneumonia? Ann Trop Paediatr 25(1):23–27

    Article  PubMed  Google Scholar 

  • Lozano JM (2001) Epidemiology of hypoxaemia in children with acute lower respiratory infection. Int J Tuberc Lung Dis 5(6):496–504

    CAS  PubMed  Google Scholar 

  • Muhe L, Weber M (2001) Oxygen delivery to children with hypoxaemia in small hospitals in developing countries. Int J Tuberc Lung Dis 5:527–532

    CAS  PubMed  Google Scholar 

  • Nunn JF (1993) Hypoxia: critical arterial PO2 for cerebral function. In: Nunn JF (ed) Nunn’s applied respiratory physiology, 4th edn. Butterworth-Heinmann Ltd, Oxford, p 532

    Google Scholar 

  • Osborn DA, Henderson-Smart DJ (2000) Kinesthetic stimulation versus theophylline for apnea in preterm infants. Cochrane Database Syst Rev (2):CD000502

    Google Scholar 

  • Rojas MX, Granados Rugeles C, Charry-Anzola LP (2009) Oxygen therapy for lower respiratory tract infections in children between 3 months and 15 years of age. Cochrane Database Syst Rev (1):CD005975. doi:10.1002/14651858.CD005975.pub2(1):39

  • Schnapp L (1990) Uses and abuses of pulse oximetry. Chest 98:1244–1250

    Article  CAS  PubMed  Google Scholar 

  • Sreenan C, Lemke RP, Hudson-Mason A, Osiovich H (2001) High-flow nasal cannulae in the management of apnea of prematurity: a comparison with conventional nasal continuous positive airway pressure. Pediatrics 107:1081–1083

    Article  CAS  PubMed  Google Scholar 

  • Usen S, Weber M, Mulholland K, Jaffar S, Oparaugo A, Adegbola R et al (1999) Clinical predictors of hypoxaemia in Gambian children with acute lower respiratory tract infection: prospective cohort study. BMJ 318:86–91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weber MW, Palmer A, Oparaugo A, Mulholland EK (1995) Comparison of nasal prongs and nasopharyngeal catheter for the delivery of oxygen in children with hypoxaemia because of lower respiratory tract infection. J Pediatr 127:378–383

    Article  CAS  PubMed  Google Scholar 

  • Weber MW, Usen S, Palmer A, Shabbar J, Mulholland EK (1997) Predictors of hypoxaemia in hospital admissions with acute lower respiratory tract infection in a developing country. Arch Dis Child 76:310–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • World Health Organization (2003) Anaesthetic infrastructure and supplies. Surgical care at the district hospital, 1st edn. WHO, Geneva, pp 15–1–15–12

    Google Scholar 

  • World Health Organization (2005) Hospital care for children: guidelines for the management of common illnesses with limited resources. WHO, Geneva, http//www.who.int/child-adolescent-health/publications/CHILD_HEALTH/PB.htm. ISBN 92 4 154670 0

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor Duke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Duke, T. (2015). Respiratory Support in Developing Countries Where Resources Are Limited. In: Rimensberger, P. (eds) Pediatric and Neonatal Mechanical Ventilation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01219-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01219-8_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01218-1

  • Online ISBN: 978-3-642-01219-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics