Skip to main content

New Insights into Sperm Physiology and Pathology

  • Chapter
  • First Online:
Fertility Control

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 198))

Abstract

Infertility is a relatively common condition affecting approximately one in ten of the population. In half of these cases, a male factor is involved, making defective sperm function the largest single, defined cause of human infertility. Among other factors, recent data suggest that oxidative stress plays a major role in the etiology of this condition. Spermatozoa spontaneously produce a variety of reactive oxygen species (ROS) including the superoxide anion, hydrogen peroxide and nitric oxide. Produced in small amounts, ROS are functionally important in driving the tyrosine phosphorylation cascades associated with sperm capacitation. However, when ROS production exceeds the spermatozoa’s limited antioxidant defenses, a state of oxidative stress is induced characterized by peroxidative damage to the sperm plasma membrane and DNA strand breakage in the sperm nucleus. Such oxidative stress not only disrupts the fertilizing potential of human spermatozoa but also the ability of these cells to create a normal healthy embryo. As a result, DNA damage in human spermatozoa is correlated with an increased incidence of miscarriage and various kinds of morbidity in the offspring. These insights into the pathophysiology of defective sperm function have clear implications for the diagnosis and treatment of male infertility, particularly with respect to the potential importance of antioxidant therapy. These concepts may also be relevant to the design of novel approaches to male contraception that attempt to replicate the pathological situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

8OHdG:

8-OH, 2′-deoxyguanosine

cAMP:

Cyclic adenosine monophosphate

CMA3:

Chromomycin

DPI:

Diphenylene iodonium

DUOX:

Dual oxidase

H2O2 :

Hydrogen peroxide

NAD(P)H:

Nicotinamide adenine dinucleotide phosphate

NO:

Nitric oxide

NOX:

NAD(P)H oxidase family

ONOO:

Peroxynitrite

PKA:

Protein kinase A

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Agarwal A, Makker K, Sharma R (2008) Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 59:2–11

    PubMed  CAS  Google Scholar 

  • Aitken RJ (2004) Founders’ Lecture. Human spermatozoa: fruits of creation, seeds of doubt. Reprod Fertil Dev 16:655–664

    PubMed  Google Scholar 

  • Aitken RJ, Baker HW (1995) Seminal leukocytes: passengers, terrorists or good samaritans? Hum Reprod 10:1736–1739

    PubMed  CAS  Google Scholar 

  • Aitken RJ, Baker MA (2006) Oxidative stress, sperm survival and fertility control. Mol Cell Endocrinol 250:66–69

    PubMed  CAS  Google Scholar 

  • Aitken RJ, Clarkson JS (1987) Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J Reprod Fertil 81:459–469

    PubMed  CAS  Google Scholar 

  • Aitken RJ, Clarkson JS (1988) Significance of reactive oxygen species and anti-oxidants in defining the efficacy of sperm preparation techniques. J Androl 9:367–376

    PubMed  CAS  Google Scholar 

  • Aitken RJ, Fisher H (1994) Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. Bioessays 16:259–267

    PubMed  CAS  Google Scholar 

  • Aitken RJ, Krausz CG (2001) Oxidative stress, DNA damage and the Y chromosome. Reproduction 122:497–506

    PubMed  CAS  Google Scholar 

  • Aitken RJ, Marshall Graves JA (2002) The future of sex. Nature 415:963

    PubMed  CAS  Google Scholar 

  • Aitken RJ, Clarkson JS, Fishel S (1989a) Generation of reactive oxygen species, lipid peroxidation and human sperm function. Biol Reprod 41:183–187

    PubMed  CAS  Google Scholar 

  • Aitken RJ, Clarkson JS, Hargreave TB, Irvine DS, Wu FCW (1989b) Analysis of the relationship between defective sperm function and the generation of reactive oxygen species in cases of oligozoospermia. J Androl 10:214–220

    PubMed  CAS  Google Scholar 

  • Aitken RJ, Irvine DS, Wu FC (1991) Prospective analysis of sperm-oocyte fusion and reactive oxygen species generation as criteria for the diagnosis of infertility. Am J Obstet Gynec 164:542–551

    PubMed  CAS  Google Scholar 

  • Aitken RJ, Harkiss D, Buckingham D (1993a) Relationship between iron-catalysed lipid peroxidation potential and human sperm function. J Reprod Fert 98:257–265

    CAS  Google Scholar 

  • Aitken RJ, Harkiss D, Buckingham DW (1993b) Analysis of lipid peroxidation mechanisms in human spermatozoa. Molec Reprod Devel 35:302–315

    CAS  Google Scholar 

  • Aitken RJ, Paterson M, Fisher H, Buckingham DW, van Duin M (1995) Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci 108:2017–2025

    PubMed  CAS  Google Scholar 

  • Aitken RJ, Buckingham DW, Carreras A, Irvine DS (1996) Superoxide dismutase in human sperm suspensions: relationship with cellular composition, oxidative stress, and sperm function. Free Radic Biol Med 21:495–504

    PubMed  CAS  Google Scholar 

  • Aitken RJ, Fisher HM, Fulton N, Gomez E, Knox W, Lewis B, Irvine S (1997) Reactive oxygen species generation by human spermatozoa is induced by exogenous NADPH and inhibited by the flavoprotein inhibitors diphenylene iodonium and quinacrine. Mol Reprod Dev 47:468–482

    PubMed  CAS  Google Scholar 

  • Aitken RJ, Gordon E, Harkiss D, Twigg JP, Milne P, Jennings Z, Irvine DS (1998a) Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod 59:1037–1046

    PubMed  CAS  Google Scholar 

  • Aitken RJ, Harkiss D, Knox W, Paterson M, Irvine DS (1998b) A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation. J Cell Sci 111:645–656

    PubMed  CAS  Google Scholar 

  • Aitken RJ, Ryan AL, Curry BJ, Baker MA (2003) Multiple forms of redox activity in populations of human spermatozoa. Mol Hum Reprod 9:645–661

    PubMed  CAS  Google Scholar 

  • Aitken RJ, Baker MA, O’Bryan M' (2004a) Shedding light on chemiluminescence: the application of chemiluminescence in diagnostic andrology. J Androl 25:455–465

    PubMed  CAS  Google Scholar 

  • Aitken RJ, Ryan AL, Baker MA, McLaughlin EA (2004b) Redox activity associated with the maturation and capacitation of mammalian spermatozoa. Free Radic Biol Med 36:994–1010

    PubMed  CAS  Google Scholar 

  • Aitken RJ, Bennetts LE, Sawyer D, Wiklendt AM, King BV (2005) Impact of radio frequency electromagnetic radiation on DNA integrity in the male germline. Int J Androl 28:171–179

    PubMed  CAS  Google Scholar 

  • Aitken RJ, Wingate JK, De Iuliis GN, Koppers AJ, McLaughlin EA (2006) Cis-unsaturated fatty acids stimulate reactive oxygen species generation and lipid peroxidation in human spermatozoa. J Clin Endocrinol Metab 91:4154–4163

    PubMed  CAS  Google Scholar 

  • Aitken RJ, Nixon B, Lin M, Koppers AJ, Lee YH, Baker MA (2007) Proteomic changes in mammalian spermatozoa during epididymal maturation. Asian J Androl 9:554–564

    PubMed  CAS  Google Scholar 

  • Aitken RJ, Baker MA, Doncel GF, Matzuk MM, Mauck CK, Harper MJ (2008) As the world grows: contraception in the 21st century. J Clin Invest 118:1330–1343

    PubMed  CAS  Google Scholar 

  • Aitken RJ, De Iuliis GN, McLachlan RI (2009) Biological and clinical significance of DNA damage in the male germ line. Int J Androl 32:46–56

    PubMed  CAS  Google Scholar 

  • Aleem M, Padwal V, Choudhari J, Balasinor N, Gill-Sharma MK (2008) Sperm protamine levels as indicators of fertilising potential in sexually mature male rats. Andrologia 40:29–37

    PubMed  CAS  Google Scholar 

  • Alvarez JG, Touchstone JC, Blasco L, Storey BT (1987) Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. J Androl 8:338–348

    PubMed  CAS  Google Scholar 

  • Austin CR (1951) Observations on the penetration of the sperm into the mammalian egg. Aust J Sci Res B 4:581–596

    PubMed  CAS  Google Scholar 

  • Badouard C, Ménézo Y, Panteix G, Ravanat JL, Douki T, Cadet J, Favier A (2008) Determination of new types of DNA lesions in human sperm. Zygote 16:9–13

    PubMed  CAS  Google Scholar 

  • Baker MA, Krutskikh A, Curry BJ, McLaughlin EA, Aitken RJ (2004) Identification of cytochrome P450-reductase as the enzyme responsible for NADPH-dependent lucigenin and tetrazolium salt reduction in rat epididymal sperm preparations. Biol Reprod 71:307–318

    PubMed  CAS  Google Scholar 

  • Baker MA, Krutskikh A, Curry BJ, Hetherington L, Aitken RJ (2005) Identification of cytochrome-b5 reductase as the enzyme responsible for NADH-dependent lucigenin chemiluminescence in human spermatozoa. Biol Reprod 73:334–342

    PubMed  CAS  Google Scholar 

  • Baker MA, Hetherington L, Aitken RJ (2006) Identification of SRC as a key PKA-stimulated tyrosine kinase involved in the capacitation-associated hyperactivation of murine spermatozoa. J Cell Sci 119:3182–3192

    PubMed  CAS  Google Scholar 

  • Baker MA, Reeves G, Hetherington L, Müller J, Baur I, Aitken RJ (2007) Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC-MS/MS analysis. Proteomics Clin Appl 1:524–532

    PubMed  CAS  Google Scholar 

  • Ball BA (2008) Oxidative stress, osmotic stress and apoptosis: impacts on sperm function and preservation in the horse. Anim Reprod Sci 107:257–267

    PubMed  CAS  Google Scholar 

  • Banfi B, Molnar G, Maturana A, Steger K, Hegedus B, Demaurex N, Krause KH (2001) A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 276:37594–37601

    PubMed  CAS  Google Scholar 

  • Baumber J, Ball BA, Linfor JJ, Meyers SA (2003) Reactive oxygen species and cryopreservation promote DNA fragmentation in equine spermatozoa. J Androl 24:621–628

    PubMed  CAS  Google Scholar 

  • Bennetts LE, Aitken RJ (2005) A comparative study of oxidative DNA damage in mammalian spermatozoa. Molec Reprod Dev 71:77–87

    PubMed  CAS  Google Scholar 

  • Bennetts LE, De Iuliis GN, Nixon B, Kime M, Zelski K, McVicar CM, Lewis SE, Aitken RJ (2008) Impact of estrogenic compounds on DNA integrity in human spermatozoa: evidence for cross-linking and redox cycling activities. Mutat Res 641:1–11

    PubMed  CAS  Google Scholar 

  • Bize I, Santander G, Cabello P, Driscoll D, Sharpe C (1991) Hydrogen peroxide is involved in hamster sperm capacitation in vitro. Biol Reprod 44:398–403

    PubMed  CAS  Google Scholar 

  • Burnaugh L, Sabeur K, Ball BA (2007) Generation of superoxide anion by equine spermatozoa as detected by dihydroethidium. Theriogenology 67:580–589

    PubMed  CAS  Google Scholar 

  • Chang MC (1951) Fertilizing capacity of spermatozoa deposited into the Fallopian tubes. Nature 168:697–698

    PubMed  CAS  Google Scholar 

  • Codrington AM, Hales BF, Robaire B (2007) Exposure of male rats to cyclophosphamide alters the chromatin structure and basic proteome in spermatozoa. Hum Reprod 22:1431–1442

    PubMed  CAS  Google Scholar 

  • De Iuliis GN, Wingate JK, Koppers AJ, McLaughlin EA, Aitken RJ (2006) Definitive evidence for the nonmitochondrial production of superoxide anion by human spermatozoa. J Clin Endocrinol Metab 91:1968–1975

    PubMed  Google Scholar 

  • De Iuliis GN, Newey RJ, King BV, Aitken RJ (2009) Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS ONE 4(7):e6446

    PubMed  Google Scholar 

  • de Lamirande E, Gagnon C (1993) Human sperm hyperactivation and capacitation as parts of an oxidative process. Free Radic Biol Med 14:157–166

    PubMed  Google Scholar 

  • de Lamirande E, Gagnon C (1995) Capacitation-associated production of superoxide anion by human spermatozoa. Free Radic Biol Med 18:487–496

    PubMed  Google Scholar 

  • de Lamirande E, O’Flaherty C (2008) Sperm activation: role of reactive oxygen species and kinases. Biochim Biophys Acta 1784:106–115

    PubMed  Google Scholar 

  • de Lamirande E, Leclerc P, Gagnon C (1997) Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod 3:175–194

    PubMed  Google Scholar 

  • de Lamirande E, Harakat A, Gagnon C (1998) Human sperm capacitation induced by biological fluids and progesterone, but not by NADH or NADPH, is associated with the production of superoxide anion. J Androl 19:215–225

    PubMed  Google Scholar 

  • Deepinder F, Makker K, Agarwal A (2007) Cell phones and male infertility: dissecting the relationship. Reprod Biomed Online 15:266–270

    PubMed  Google Scholar 

  • Ecroyd H, Jones RC, Aitken RJ (2003) Endogenous redox activity in mouse spermatozoa and its role in regulating the tyrosine phosphorylation events associated with sperm capacitation. Biol Reprod 69:347–354

    PubMed  CAS  Google Scholar 

  • Fischer MA, Willis J, Zini A (2003) Human sperm DNA integrity: correlation with sperm cytoplasmic droplets. Urology 61:207–211

    PubMed  Google Scholar 

  • Ford WC (2004) Regulation of sperm function by reactive oxygen species. Hum Reprod Update 10:387–399

    PubMed  CAS  Google Scholar 

  • Gomez E, Buckingham DW, Brindle J, Lanzafame F, Irvine DS, Aitken RJ (1996) Development of an image analysis system to monitor the retention of residual cytoplasm by human spermatozoa: correlation with biochemical markers of the cytoplasmic space, oxidative stress, and sperm function. J Androl 17:276–287

    PubMed  CAS  Google Scholar 

  • Gomez E, Irvine DS, Aitken RJ (1998) Evaluation of a spectrophotometric assay for the measurement of malondialdehyde and 4-hydroxyalkenals in human spermatozoa: relationships with semen quality and sperm function. Int J Androl 21:81–94

    PubMed  CAS  Google Scholar 

  • Griveau JF, Renard P, Le Lannou D (1994) An in vitro promoting role for hydrogen peroxide in human sperm capacitation. Int J Androl 17:300–307

    PubMed  CAS  Google Scholar 

  • Hecht D, Zick Y (1992) Selective inhibition of protein tyrosine phosphatase activities by H2O2 and vanadate in vitro. Biochem Biophys Res Commun 188:773–779

    PubMed  CAS  Google Scholar 

  • Herrero MB, Perez Martinez S, Viggiano JM, Polak JM, Gimeno MF (1996) Localization by indirect immunofluorescence of nitric oxidase synthase in mouse and human spermatozoa. Reprod Fertil Dev 8:931–934

    PubMed  CAS  Google Scholar 

  • Herrero MB, de Lamirande E, Gagnon C (2001) Tyrosine nitration in human spermatozoa: a physiological function of peroxynitrite, the reaction product of nitric oxide and superoxide. Mol Hum Reprod 7:913–921

    PubMed  CAS  Google Scholar 

  • Herrero MB, de Lamirande E, Gagnon C (2003) Nitric oxide is a signaling molecule in spermatozoa. Curr Pharm Des 9:419–425

    PubMed  CAS  Google Scholar 

  • Hong CY, Chiang BN, Turner P (1984) Calcium ion is the key regulator of human sperm function. Lancet December 22:1449–1451

    Google Scholar 

  • Huszar G, Ozkavukcu S, Jakab A, Celik-Ozenci C, Sati GL, Cayli S (2006) Hyaluronic acid binding ability of human sperm reflects cellular maturity and fertilizing potential: selection of sperm for intracytoplasmic sperm injection. Curr Opin Obstet Gynecol 18:260–267

    PubMed  Google Scholar 

  • Iuchi Y, Okada F, Tsunoda S, Kibe N, Shirasawa N, Ikawa M, Okabe M, Ikeda Y, Fujii J (2008) Peroxiredoxin 4 knockout results in elevated spermatogenic cell death via oxidative stress. Biochem J 419(1):149–158

    Google Scholar 

  • Jones R, Mann T, Sherins R (1979) Peroxidative breakdown of phospholipids in human spermatozoa, spermicidal properties of fatty acid peroxides, and protective action of seminal plasma. Fertil Steril 31:531–537

    PubMed  CAS  Google Scholar 

  • Kadirvel G, Kumar S, Kumaresan A (2009) Lipid peroxidation, mitochondrial membrane potential and DNA integrity of spermatozoa in relation to intracellular reactive oxygen species in liquid and frozen-thawed buffalo semen. Anim Reprod Sci 114(1–3):125–134

    PubMed  CAS  Google Scholar 

  • Koppers AJ, De Iuliis GN, Finnie JM, McLaughlin EA, Aitken RJ (2008) Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J Clin Endocrinol Metab 93:3199–3207

    PubMed  CAS  Google Scholar 

  • Leclerc P, de Lamirande E, Gagnon C (1997) Regulation of protein-tyrosine phosphorylation and human sperm capacitation by reactive oxygen derivatives. Free Radic Biol Med 22:643–656

    PubMed  CAS  Google Scholar 

  • Leclerc P, de Lamirande E, Gagnon C (1998) Interaction between Ca2+, cyclic 3′, 5′ adenosine monophosphate, the superoxide anion, and tyrosine phosphorylation pathways in the regulation of human sperm capacitation. J Androl 19:434–443

    PubMed  CAS  Google Scholar 

  • Lewis B, Aitken RJ (2001) A redox-regulated tyrosine phosphorylation cascade in rat spermatozoa. J Androl 22:611–622

    PubMed  CAS  Google Scholar 

  • Li Y, Trush MA (1998) Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochem Biophys Res Commun 253:295–299

    PubMed  CAS  Google Scholar 

  • Li Z, Yang J, Huang H (2006) Oxidative stress induces H2AX phosphorylation in human spermatozoa. FEBS Lett 580:6161–6168

    PubMed  CAS  Google Scholar 

  • Lin M, Lee YH, Xu W, Baker MA, Aitken RJ (2006) Ontogeny of tyrosine phosphorylation-signaling pathways during spermatogenesis and epididymal maturation in the mouse. Biol Reprod 75:588–597

    PubMed  CAS  Google Scholar 

  • McKelvey-Martin VJ, Melia N, Walsh IK, Johnston SR, Hughes CM, Lewis SE, Thompson W (1997) Two potential clinical applications of the alkaline single-cell gel electrophoresis assay: (1) Human bladder washings and transitional cell carcinoma of the bladder; and (2) Human sperm and male infertility. Mutat Res 375:93–104

    PubMed  CAS  Google Scholar 

  • McLachlan RI, de Kretser DM (2001) Male infertility: the case for continued research. Med J Aust 174:116–117

    PubMed  CAS  Google Scholar 

  • Miranda-Vizuete A, Sadek CM, Jiménez A, Krause WJ, Sutovsky P, Oko R (2004) The mammalian testis-specific thioredoxin system. Antioxid Redox Signal 6:25–40

    PubMed  CAS  Google Scholar 

  • Nakashima I, Takeda K, Kawamoto Y, Okuno Y, Kato M, Suzuki H (2005) Redox control of catalytic activities of membrane-associated protein tyrosine kinases. Arch Biochem Biophys 434:3–10

    PubMed  CAS  Google Scholar 

  • Nuti F, Krausz C (2008) Gene polymorphisms/mutations relevant to abnormal spermatogenesis. Reprod Biomed Online 16(5):04–513

    Google Scholar 

  • O’Flaherty C, de Lamirande E, Gagnon C (2006) Positive role of reactive oxygen species in mammalian sperm capacitation: triggering and modulation of phosphorylation events. Free Radic Biol Med 41:528–540

    PubMed  Google Scholar 

  • O’Flaherty C, Beorlegui N, Beconi MT (2003) Participation of superoxide anion in the capacitation of cryopreserved bovine sperm. Int J Androl 26:109–114

    PubMed  Google Scholar 

  • Paul C, Murray AA, Spears N, Saunders PT (2008) A single, mild, transient scrotal heat stress causes DNA damage, subfertility and impairs formation of blastocysts in mice. Reproduction 136:73–84

    PubMed  CAS  Google Scholar 

  • Piña-Guzmán B, Solís-Heredia MJ, Rojas-García AE, Urióstegui-Acosta M, Quintanilla-Vega B (2006) Genetic damage caused by methyl-parathion in mouse spermatozoa is related to oxidative stress. Toxicol Appl Pharmacol 216:216–224

    PubMed  Google Scholar 

  • Plastira K, Msaouel P, Angelopoulou R, Zanioti K, Plastiras A, Pothos A, Bolaris S, Paparisteidis N, Mantas D (2007) The effects of age on DNA fragmentation, chromatin packaging and conventional semen parameters in spermatozoa of oligoasthenoteratozoospermic patients. J Assist Reprod Genet 24:437–443

    PubMed  Google Scholar 

  • Rivlin J, Mendel J, Rubinstein S, Etkovitz N, Breitbart H (2004) Role of hydrogen peroxide in sperm capacitation and acrosome reaction. Biol Reprod 70:518–522

    PubMed  CAS  Google Scholar 

  • Roy SC, Atreja SK (2008) Effect of reactive oxygen species on capacitation and associated protein tyrosine phosphorylation in buffalo (Bubalus bubalis) spermatozoa. Anim Reprod Sci 107:68–84

    PubMed  CAS  Google Scholar 

  • Sabeur K, Ball BA (2007) Characterization of NADPH oxidase 5 in equine testis and spermatozoa. Reproduction 134:263–270

    PubMed  CAS  Google Scholar 

  • Sakkas D, Urner F, Bizzaro D, Manicardi G, Bianchi PG, Shoukir Y, Campana A (1998) Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development. Hum Reprod 13(Suppl 4):11–29

    PubMed  Google Scholar 

  • Sawyer DE, Mercer BG, Wiklendt AM, Aitken RJ (2003) Quantitative analysis of gene-specific DNA damage in human spermatozoa. Mutat Res 529:21–34

    PubMed  CAS  Google Scholar 

  • Sega GA (1991) Adducts in sperm protamine and DNA vs. mutation frequency. Prog Clin Biol Res 372:521–530

    PubMed  CAS  Google Scholar 

  • Shukla S, Jha RK, Laloraya M, Kumar PG (2005) Identification of non-mitochondrial NADPH oxidase and the spatio-temporal organization of its components in mouse spermatozoa. Biochem Biophys Res Commun 331:476–483

    PubMed  CAS  Google Scholar 

  • Spermon JR, Ramos L, Wetzels AM, Sweep CG, Braat DD, Kiemeney LA, Witjes JA (2006) Sperm integrity pre- and post-chemotherapy in men with testicular germ cell cancer. Hum Reprod 21:1781–1786

    PubMed  CAS  Google Scholar 

  • Suleiman SA, Elamin Ali M, Zaki ZMS, El-Malik EMA, Nasr MA (1996) Lipid peroxidation and human sperm motility: protective role of vitamin E. J Androl 17:530–537

    PubMed  CAS  Google Scholar 

  • Tosic J, Walton A (1946) Formation of hydrogen peroxide by spermatozoa and its inhibitory effect on respiration. Nature 158:485

    PubMed  CAS  Google Scholar 

  • Tremellen K (2008) Oxidative stress and male infertility – a clinical perspective. Hum Reprod Update 14:243–258

    PubMed  CAS  Google Scholar 

  • Urner F, Sakkas D (2003) Protein phosphorylation in mammalian spermatozoa. Reproduction 125:17–26

    PubMed  CAS  Google Scholar 

  • Verma A, Kanwar KC (1999) Effect of vitamin E on human sperm motility and lipid peroxidation in vitro. Asian J Androl 1:151–154

    PubMed  CAS  Google Scholar 

  • Vernet P, Fulton N, Wallace C, Aitken RJ (2001) Analysis of reactive oxygen species generating systems in rat epididymal spermatozoa. Biol Reprod 65:1102–1113

    PubMed  CAS  Google Scholar 

  • Visconti PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, Olds-Clarke P, Kopf GS (1995) Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121:1139–1150

    PubMed  CAS  Google Scholar 

  • Vorup-Jensen T, Hjort T, Abraham-Peskir JV, Guttmann P, Jensenius JC, Uggerhøj E, Medenwaldt R (1999) X-ray microscopy of human spermatozoa shows change of mitochondrial morphology after capacitation. Hum Reprod 14:880–884

    PubMed  CAS  Google Scholar 

  • Zhang H, Zheng R-L (1996) Promotion of human sperm capacitation by superoxide anion. Free Rad Res 24:261–268

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. John Aitken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aitken, R.J., Baker, M.A., De Iuliis, G.N., Nixon, B. (2010). New Insights into Sperm Physiology and Pathology. In: Habenicht, UF., Aitken, R. (eds) Fertility Control. Handbook of Experimental Pharmacology, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02062-9_7

Download citation

Publish with us

Policies and ethics