Skip to main content

Energy Adaptive Sensor Scheduling for Noisy Sensor Measurements

  • Conference paper
Distributed Computing in Sensor Systems (DCOSS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5516))

Included in the following conference series:

Abstract

In wireless sensor network applications, sensor measurements are corrupted by noises resulting from harsh environmental conditions, hardware and transmission errors. Minimising the impact of noise in an energy constrained sensor network is a challenging task. We study the problem of estimating environmental phenomena (e.g., temperature, humidity, pressure) based on noisy sensor measurements to minimise the estimation error. An environmental phenomenon is modeled using linear Gaussian dynamics and the Kalman filtering technique is used for the estimation. At each time step, a group of sensors is scheduled to transmit data to the base station to minimise the total estimated error for a given energy budget. The sensor scheduling problem is solved by dynamic programming and one-step-look-ahead methods. Simulation results are presented to evaluate the performance of both methods. The dynamic programming method produced better results with higher computational cost than the one-step-look-ahead method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nakamura, E.F., Loureiro, A.A.F., Frery, A.C.: Information fusion for wireless sensor networks: Methods, models, and classifications. ACM Comput. Surv. 39(3), 9 (2007)

    Article  Google Scholar 

  2. Yee Lin, T., Sehgal, V., Hamid, H.S.: Sensoclean: Handling noisy and incomplete data in sensor networks using modeling. Technical report, University of maryland (2005)

    Google Scholar 

  3. Takruri, M., Rajasegarar, S., Challa, S., Leckie, C., Palaniswami, M.: Online drift correction in wireless sensor networks using spatio-temporal modeling. In: 2008 11th International Conference on Information Fusion, pp. 1–8 (30 2008-July 3 2008)

    Google Scholar 

  4. Elnahrawy, E., Nath, B.: Cleaning and querying noisy sensors. In: WSNA 2003: Proceedings of the 2nd ACM international conference on Wireless sensor networks and applications, pp. 78–87. ACM, New York (2003)

    Chapter  Google Scholar 

  5. Bychkovskiy, V., Megerian, S., Estrin, D., Potkonjak, M.: A collaborative approach to in-place sensor calibration. In: Proceedings of the Second International Workshop on Information Processing in Sensor Networks IPSN, pp. 301–316 (2003)

    Google Scholar 

  6. McCulloch, J., Guru, S.M., McCarthy, P., Hugo, D., Peng, W., Terhorst, A.: Wireless sensor network deployment for water use efficiency in irrigation. In: REALWSN 2008: Proceedings of the workshop on Real-world wireless sensor networks, pp. 46–50. ACM, New York (2008)

    Google Scholar 

  7. Benth, J.S., Benth, F.E., Jalinskas, P.: A spatial-temporal model for temperature with seasonal variance. Journal of Applied Statistics 34(7), 823–841 (2007)

    Article  MathSciNet  Google Scholar 

  8. Data: Intel Lab Dataset, http://db.csail.mit.edu/labdata/labdata.html/

  9. Maheswararajah, M., Halgamuge, S., Premaratne, M.: Sensor scheduling for target tracking by sub-optimal algorithms. IEEE Transactions on Vehicular Technology (2009) (accepted for publication)

    Google Scholar 

  10. Evans, J., Krishnamurthy, V.: Optimal sensor scheduling for hidden markov models. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech, and Signal Processing. ICASSP 1998, vol. 4, pp. 2161–2164 (1998)

    Google Scholar 

  11. Kalman, R.E.: A new approach to linear filtering and prediction problem. Transaction of ASME, Journal of Basic Engineering on Automatic Control, 35–45 (March 1960)

    Google Scholar 

  12. Song, E., Zhu, Y., Zhou, J.: The optimality of kalman filtering fusion with cross-correlated sensor noises. In: 43rd IEEE Conference on Decision and Control, 2004. CDC, vol. 5 (December 2004)

    Google Scholar 

  13. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 3rd edn., vol. 1. Athena Scientific (2005)

    Google Scholar 

  14. Williams, J.L., Fisher, J.W., Willsky, A.S.: Approximate dynamic programming for communication-constrained sensor network management. IEEE Transactions on signal Processing 55(8), 4300–4311

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maheswararajah, S., Guru, S.M., Shu, Y., Halgamuge, S. (2009). Energy Adaptive Sensor Scheduling for Noisy Sensor Measurements. In: Krishnamachari, B., Suri, S., Heinzelman, W., Mitra, U. (eds) Distributed Computing in Sensor Systems. DCOSS 2009. Lecture Notes in Computer Science, vol 5516. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02085-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02085-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02084-1

  • Online ISBN: 978-3-642-02085-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics