Skip to main content

Homeomorphic Alignment of Edge-Weighted Trees

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5534))

Abstract

Motion capture, a currently active research area, needs estimation of the pose of the subject. For this purpose, we match the tree representation of the skeleton of the 3D shape to a pre-specified tree model. Unfortunately, the tree representation can contain vertices that split limbs in multiple parts, which do not allow a good match by usual methods. To solve this problem, we propose a new alignment, taking in account the homeomorphism between trees, rather than the isomorphism, as in prior works. Then, we develop several computationally efficient algorithms for reaching real-time motion capture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Laurentini, A.: The Visual Hull Concept for Silhouette-based Image Understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(2), 150–162 (1994)

    Article  Google Scholar 

  2. Moeslund, T.B., Hilton, A., Krüger, V.: A Survey of Advances in Vision-based Human Motion Capture and Analysis. Computer Vision and Image Understanding 104(2-3), 90–126 (2006)

    Article  Google Scholar 

  3. Chu, C., Jenkins, O., Mataric, M.: Markerless Kinematic Model and Motion Capture from Volume Sequences. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  4. Menier, C., Boyer, E., Raffin, B.: 3d Skeleton-based Body Pose Recovery. In: Proceedings of the 3rd International Symposium on 3D Data Processing, Visualization and Transmission, Chapel Hill, USA (2006)

    Google Scholar 

  5. Brostow, G., Essa, I., Steedly, D., Kwatra, V.: Novel Skeletal Representation for Articulated Creatures. LNCS, pp. 66–78. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  6. Sundar, H., Silver, D., Gagvani, N., Dickinson, S.: Skeleton Based Shape Matching and Retrieval. In: SMI, pp. 130–139 (2003)

    Google Scholar 

  7. Baran, I., Popović, J.: Automatic rigging and animation of 3D characters. In: International Conference on Computer Graphics and Interactive Techniques. ACM Press, New York (2007)

    Google Scholar 

  8. Cornea, N., Demirci, M., Silver, D., Shokoufandeh, A., Dickinson, S., Kantor, P.: 3D Object Retrieval using Many-to-many Matching of Curve Skeletons. In: Shape Modeling and Applications (2005)

    Google Scholar 

  9. Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: Shock Graphs and Shape Matching. International Journal of Computer Vision 35(1), 13–32 (1999)

    Article  Google Scholar 

  10. Wang, J., Zhang, K.: Finding similar consensus between trees: an algorithm and a distance hierarchy. Pattern Recognition 34(1), 127–137 (2001)

    Article  MATH  Google Scholar 

  11. Tai, K.: The Tree-to-Tree Correction Problem. Journal of the ACM 26(3), 422–433 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiang, T., Wang, L., Zhang, K.: Alignment of Trees - an Alternative to Tree Edit. In: CPM 1994: Proceedings of the 5th Annual Symposium on Combinatorial Pattern Matching, London, UK, pp. 75–86. Springer, Heidelberg (1994)

    Google Scholar 

  13. Jansson, J., Lingas, A.: A Fast Algorithm for Optimal Alignment between Similar Ordered Trees. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 232–240. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Tanaka, E., Tanaka, K.: The Tree-to-tree Editing Problem. International Journal of Pattern Recognition and Artificial Intelligence 2(2), 221–240 (1988)

    Article  Google Scholar 

  15. Selkow, S.: The Tree-to-Tree Editing Problem. Information Processing Letters 6(6), 184–186 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, J., Zhang, K., Chang, G., Shasha, D.: Finding Approximate Patterns in Undirected Acyclic Graphs. Pattern Recognition 35(2), 473–483 (2002)

    Article  MATH  Google Scholar 

  17. Raynal, B., Biri, V., Couprie, M.: Homeomorphic Alignment of Weighted Trees. Internal report IGM 2009-01. LIGM, Université Paris-Est (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raynal, B., Couprie, M., Biri, V. (2009). Homeomorphic Alignment of Edge-Weighted Trees. In: Torsello, A., Escolano, F., Brun, L. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2009. Lecture Notes in Computer Science, vol 5534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02124-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02124-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02123-7

  • Online ISBN: 978-3-642-02124-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics