Skip to main content

Functional Brain Image Classification Techniques for Early Alzheimer Disease Diagnosis

  • Conference paper
Bioinspired Applications in Artificial and Natural Computation (IWINAC 2009)

Abstract

Currently, the accurate diagnosis of the Alzheimer disease (AD) still remains a challenge in the clinical practice. As the number of AD patients has increased, its early diagnosis has received more attention for both social and medical reasons. Single photon emission computed tomography (SPECT), measuring the regional cerebral blood flow, enables the diagnosis even before anatomic alterations can be observed by other imaging techniques. However, conventional evaluation of SPECT images often relies on manual reorientation, visual reading and semiquantitative analysis of certain regions of the brain. This paper evaluates different pattern classifiers including k-nearest neighbor (kNN), classification trees, support vector machines and feedforward neural networks in combination with template-based normalized mean square error (NMSE) features of several coronal slices of interest (SOI) for the development of a computer aided diagnosis (CAD) system for improving the early detection of the AD. The proposed system, yielding a 98.7% AD diagnosis accuracy, reports clear improvements over existing techniques such as the voxel-as-features (VAF) which yields just a 78% classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Petrella, J.R., Coleman, R.E., Doraiswamy, P.M.: Neuroimaging and early diagnosis of Alzheimer disease: A look to the future. Radiology 226, 315–336 (2003)

    Article  Google Scholar 

  2. Holman, B.L., Johnson, K.A., Gerada, B., Carvaiho, P.A., Sathn, A.: The scintigraphic appearance of Alzheimer’s disease: a prospective study using Tc-99m HMPAO SPECT. Journal of Nuclear Medicine 33(2), 181–185 (1992)

    Google Scholar 

  3. Ramírez, J., Górriz, J.M., López, M., Salas-Gonzalez, D., Álvarez, I., Segovia, F., Puntonet, C.G.: Early detection of the Alzheimer disease combining feature selection and kernel machines. In: ICONIP 2008 Proceedings. LNCS, Springer, Heidelberg (2008)

    Google Scholar 

  4. McCulloch, W.S., Pitts, W.: A logical calculus of ideas immanent in nervous activity. Bull. Mathematical Biophysics 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rosenblatt, R.: Principles of Neurodynamics. Spartan Books, New York (1962)

    MATH  Google Scholar 

  6. Friston, K.J., Ashburner, J., Kiebel, S.J., Nichols, T.E., Penny, W.D.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, London (2007)

    Book  Google Scholar 

  7. Salas-González, D., Górriz, J.M., Ramírez, J., Lassl, A., Puntonet, C.G.: Improved Gauss-Newton optimization methods in affine registration of SPECT brain images. IET Electronics Letters 44(22), 1291–1292 (2008)

    Article  Google Scholar 

  8. Saxena, P., Pavel, D.G., Quintana, J.C., Horwitz, B.: An automatic threshold-based scaling method for enhancing the usefulness of Tc-HMPAO SPECT in the diagnosis of Alzheimers disease. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 623–630. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  9. Stoeckel, J., Malandain, G., Migneco, O., Koulibaly, P.M., Robert, P., Ayache, N., Darcourt, J.: Classification of SPECT images of normal subjects versus images of Alzheimer’s disease patients. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 666–674. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramírez, J. et al. (2009). Functional Brain Image Classification Techniques for Early Alzheimer Disease Diagnosis. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds) Bioinspired Applications in Artificial and Natural Computation. IWINAC 2009. Lecture Notes in Computer Science, vol 5602. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02267-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02267-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02266-1

  • Online ISBN: 978-3-642-02267-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics