Skip to main content

Seed Dormancy: Approaches for Finding New Genes in Cereals

  • Chapter
  • First Online:
Plant Developmental Biology - Biotechnological Perspectives

Abstract

Seed dormancy is a property of mature seeds which blocks germination under favourable conditions and which is acquired during seed development. It is a widespread trait which assists survival of seeds in nature, and its presence in many crop species is highly desirable. In cereals, dormancy at harvest is a desirable trait because it prevents the premature germination of seeds in the field, called pre-harvest sprouting. Dormancy is initiated early during seed development, and its maintenance is dependent on a complex interaction between environmental and genetic factors. The plant hormones abscisic acid (ABA) and gibberellins (GAs) play major roles in the initiation, maintenance and loss of seed dormancy. The decay of dormancy can be influenced by several factors including environmental conditions (i.e. cold and light), nitrogen applications, seed coat characteristics and after-ripening. Despite the importance of seed dormancy in agriculture, the factors controlling its development and decay are not well understood. This review is focused on different strategies used for finding dormancy-related genes in model plants and on biotechnological approaches for modifying dormancy in cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal GK, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H (2001) Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol 125:1248–1257

    PubMed  CAS  Google Scholar 

  • Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, Grappin P, Jullien M (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219:479–488

    PubMed  CAS  Google Scholar 

  • Alonso-Blanco C, Bentsink L, Hanhart CJ, Vries HBE, Koornneef M (2003) Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics 164:711–729

    PubMed  CAS  Google Scholar 

  • Baskin CC, Baskin JM (1998) Introduction. In: Baskin CC, Baskin JM (eds) Seeds. Ecology, biogeography, and evolution of dormancy and germination. Academic Press, London, pp 1–3

    Google Scholar 

  • Baumbusch LO, Hughes DW, Galau GA, Jakobsen KS (2004) LEC1, FUS3, ABI3 and Em expression reveals no correlation with dormancy in Arabidopsis. J Exp Bot 55:77–87

    PubMed  CAS  Google Scholar 

  • Barrero JM, Talbot MJ, White RG, Jacobsen JV, Gubler F (2009) Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Plant Physiol 150:1006–1021. doi:10.1104/pp.109.137901

    PubMed  CAS  Google Scholar 

  • Benech-Arnold RL, Giallorenzi MC, Frank J, Rodriguez V (1999) Termination of hull-imposed dormancy in developing barley grains is correlated with changes in embryonic ABA levels and sensitivity. Seed Sci Res 9:39–47

    Google Scholar 

  • Bentsink L, Koornneef M (2002) Seed dormancy and germination. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, MD. doi:10.1199/tab.0050, http://www.aspb.org/publications/Arabidopsis/

    Google Scholar 

  • Bentsink L, Jowett J, Hanhart CJ, Koornneef M (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci USA 103:17042–17047

    PubMed  CAS  Google Scholar 

  • Bentsink L, Soppe W, Koornneef M (2007) Genetic aspects of seed dormancy. In: Bradford K, Nonogaki H (eds) Seed development, dormancy and germination. Blackwell, Oxford, pp 113–132

    Google Scholar 

  • Bethke PC, Gubler F, Jacobsen JV, Jones RL (2004) Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta 219:847–855

    PubMed  CAS  Google Scholar 

  • Bethke PC, Libourel IGL, Aoyama N, Chung YY, Still DW, Jones RL (2007) The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol 143:1173–1188

    PubMed  CAS  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    PubMed  CAS  Google Scholar 

  • Borthwick HA, Hendricks SB, Parker MW, Toole EH, Toole VK (1952) A reversible photoreaction controlling seed germination. Proc Natl Acad Sci USA 38:662–666

    PubMed  CAS  Google Scholar 

  • Cadman CSC, Toorop PE, Hilhorst HWM, Finch-Savage WE (2006) Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J 46:805–822

    PubMed  CAS  Google Scholar 

  • Caldana C, Scheible W-R, Mueller-Roeber B, Ruzicic S (2007) A quantitative RT-PCR platform for high-throughput expression profiling of 2500 rice transcription factors. Plant Methods 3:7

    PubMed  Google Scholar 

  • Carrera E, Holman T, Medhurst A, Peer W, Schmuths H, Footitt S, Theodoulou FL, Holdsworth MJ (2007) Gene expression profiling reveals defined functions of the ATP-binding cassette transporter COMATOSE late in phase II of germination. Plant Physiol 143:1669–1679

    PubMed  CAS  Google Scholar 

  • Carrera E, Holman T, Medhurst A, Dietrich D, Footitt S, Theodoulou FL, Holdsworth MJ (2008) Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant J 53:214–224

    PubMed  CAS  Google Scholar 

  • Chibani K, Ali-Rachedi S, Job C, Job D, Jullien M, Grappin P (2006) Proteomic analysis of seed dormancy in Arabidopsis. Plant Physiol 142:1493–1510

    PubMed  CAS  Google Scholar 

  • Chiwocha SDS, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M, Ross ARS, Kermode AR (2003) A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J 35:405–417

    PubMed  CAS  Google Scholar 

  • Chiwocha SDS, Cutler AJ, Abrams SR, Ambrose SJ, Yang J, Ross ARS, Kermode AR (2005) The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J 42:35–48

    PubMed  CAS  Google Scholar 

  • Chono M, Honda I, Shinoda S, Kushiro T, Kamiya Y, Nambara E, Kawakami N, Kaneko S, Watanabe Y (2006) Field studies on the regulation of abscisic acid content and germinability during grain development of barley: molecular and chemical analysis of pre-harvest sprouting. J Exp Bot 57:2421–2434

    PubMed  CAS  Google Scholar 

  • Clerkx EJM (2004) The genetics of seed quality in Arabidopsis thaliana. PhD Thesis, Wageningen University, Wageningen

    Google Scholar 

  • Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960–968

    PubMed  CAS  Google Scholar 

  • Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484

    PubMed  CAS  Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37:778–786

    PubMed  CAS  Google Scholar 

  • Corbineau F, Benamar A, Come D (2000) Changes in sensitivity to abscisic acid of the developing and maturing embryo of two wheat cultivars with different sprouting susceptibility. Israel J Plant Sci 48:189–197

    CAS  Google Scholar 

  • Czechowski T, Bari RP, Stitt M, Scheible WR, Udvardi MK (2004) Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J 38:366–379

    PubMed  CAS  Google Scholar 

  • Debeaujon I, Leon-Kloosterziel KM, Koornneef M (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol 122:403–413

    PubMed  CAS  Google Scholar 

  • Dill A, Jung HS, Sun TP (2001) The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci USA 98:14162–14167

    PubMed  CAS  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    PubMed  CAS  Google Scholar 

  • Finch-Savage WE, Cadman CSC, Toorop PE, Lynn JR, Hilhorst HWM (2007) Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. Plant J 51:60–78

    PubMed  CAS  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    PubMed  CAS  Google Scholar 

  • Frey A, Godin B, Bonnet M, Sotta B, Marion-Poll A (2004) Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia. Planta 218:958–964

    PubMed  CAS  Google Scholar 

  • Fu XD, Richards DE, Ait-Ali T, Hynes LW, Ougham H, Peng JR, Harberd NP (2002) Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor. Plant Cell 14:3191–3200

    PubMed  CAS  Google Scholar 

  • Fu XD, Richards DE, Fleck B, Xie DX, Burton N, Harberd NP (2004) The Arabidopsis mutant sleepy1(gar2-1) protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates. Plant Cell 16:1406–1418

    PubMed  CAS  Google Scholar 

  • Fu Q, Wang BC, Jin X, Li HB, Han P, Wei KH, Zhang XM, Zhu YX (2005) Proteomic analysis and extensive protein identification from dry, germinating Arabidopsis seeds and young seedlings. J Biochem Mol Biol 38:650–660

    PubMed  CAS  Google Scholar 

  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2002) Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol 129:823–837

    PubMed  CAS  Google Scholar 

  • Geyer R, Koornneef M, Soppe W (2007) A mutation in a TFIIS transcription elongation factor causes reduced seed dormancy in Arabidopsis. In: Abstr Vol 2nd Int Soc Seed Sci (ISSS) Worksh Molecular Aspects of Seed Dormancy and Germination, Salamanca, Spain, pp 11

    Google Scholar 

  • Gualberti G, Papi M, Bellucci L, Ricci L, Bouchez D, Camilleri C, Costantino P, Vittorioso P (2002) Mutations in the Dof zinc finger genes DAG2 and DAG1 influence with opposite effects the germination of Arabidopsis seeds. Plant Cell 14:1253–1263

    PubMed  CAS  Google Scholar 

  • Gubler F, Millar AA, Jacobsen JV (2005) Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8:183–187

    PubMed  CAS  Google Scholar 

  • Gubler F, Hughes T, Waterhouse P, Jacobsen J (2008) Regulation of dormancy in barley by blue light and after-ripening: effects on ABA and GA metabolism. Plant Physiol 147:886–896

    PubMed  CAS  Google Scholar 

  • Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J 34:733–739

    PubMed  CAS  Google Scholar 

  • Holdsworth MJ, Finch-Savage WE, Grappin P, Job D (2008) Post-genomics dissection of seed dormancy and germination. Trends Plant Sci 13:7–13

    PubMed  CAS  Google Scholar 

  • Hugouvieux V, Kwak JM, Schroeder JI (2001) An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106:477–487

    PubMed  CAS  Google Scholar 

  • Imtiaz M, Ogbonnaya FC, Oman J, van Ginke M (2008) Characterization of QTL controlling genetic variation for pre-harvest sprouting in synthetic backcross derived wheat lines. Genetics 178:1725–1736

    PubMed  CAS  Google Scholar 

  • Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Ma H, Shinozaki K (2007) Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. Plant Cell 19:3549–3562

    PubMed  CAS  Google Scholar 

  • Itoh H, Matsuoka M, Steber CM (2003) A role for the ubiquitin-26S-proteasome pathway in gibberellin signaling. Trends Plant Sci 8:492–497

    PubMed  CAS  Google Scholar 

  • Karssen CM, Brinkhorstvanderswan DLC, Breekland AE, Koornneef M (1983) Induction of dormancy during seed development by endogenous abscisic-acid - studies on abscisic-acid deficient genotypes of Arabidopsis thaliana (L) Heynh. Planta 157:158–165

    CAS  Google Scholar 

  • Katagiri T, Ishiyama K, Kato T, Tabata S, Kobayashi M, Shinozaki K (2005) An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana. Plant J 43:107–117

    PubMed  CAS  Google Scholar 

  • Kato K, Nakamura W, Tabiki T, Miura H, Sawada S (2001) Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes. Theor Appl Genet 102:980–985

    CAS  Google Scholar 

  • Ko JH, Yang SH, Han KH (2006) Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J 47:343–355

    PubMed  CAS  Google Scholar 

  • Koornneef M, Jorna ML, Derswan D, Karssen CM (1982) The isolation of abscisic-acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L) Heynh. Theor Appl Genet 61:385–393

    CAS  Google Scholar 

  • Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic-acid insensitive mutants of Arabidopsis thaliana. Physiol Plant 61:377–383

    CAS  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36

    PubMed  CAS  Google Scholar 

  • Koyama T, Furutani M, Tasaka M, Ohme-Takagi M (2007) TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell 19:473–484

    PubMed  CAS  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J 23:1647–1656

    PubMed  CAS  Google Scholar 

  • Lee SC, Cheng H, King KE, Wang WF, He YW, Hussain A, Lo J, Harberd NP, Peng JR (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev 16:646–658

    PubMed  CAS  Google Scholar 

  • Lefebvre V, North H, Frey A, Sotta B, Seo M, Okamoto M, Nambara E, Marion-Poll A (2006) Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J 45:309–319

    PubMed  CAS  Google Scholar 

  • Leon-Kloosterziel KM, vandeBunt GA, Zeevaart JAD, Koornneef M (1996) Arabidopsis mutants with a reduced seed dormancy. Plant Physiol 110:233–240

    PubMed  CAS  Google Scholar 

  • Leymarie J, Bruneaux E, Gibot-Leclerc S, Corbineau F (2007) Identification of transcripts potentially involved in barley seed germination and dormancy using cDNA-AFLP. J Exp Bot 58:425–437

    PubMed  CAS  Google Scholar 

  • Lin SY, Sasaki T, Yano M (1998) Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor Appl Genet 96:997–1003

    CAS  Google Scholar 

  • Liu YX, Koornneef M, Soppe WJJ (2007) The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. Plant Cell 19:433–444

    PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand S, Kinoshita N, Chua NH (2003) AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation. Genes Dev 17:410–418

    PubMed  CAS  Google Scholar 

  • Lu C, Fedoroff N (2000) A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12:2351–2365

    PubMed  CAS  Google Scholar 

  • Mares D, Mrva K, Cheong J, Williams K, Watson B, Storlie E, Sutherland M, Zou Y (2005) A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theor Appl Genet 111:1357–1364

    PubMed  CAS  Google Scholar 

  • Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, Frey A, MarionPoll A (1996) Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15:2331–2342

    PubMed  CAS  Google Scholar 

  • McCarty DR (1995) Genetic-control and integration of maturation and germination pathways in seed development. Annu Rev Plant Physiol Plant Mol Biol 46:71–93

    CAS  Google Scholar 

  • McGinnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun TP, Steber CM (2003) The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15:1120–1130

    PubMed  CAS  Google Scholar 

  • Milberg P, Andersson L, Thompson K (2000) Large-seeded species are less dependent on light for germination than small-seeded ones. Seed Sci Res 10:99–104

    Google Scholar 

  • Millar AA, Jacobsen JV, Ross JJ, Helliwell CA, Poole AT, Scofield G, Reid JB, Gubler F (2006) Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8′-hydroxylase. Plant J 45:942–954

    PubMed  CAS  Google Scholar 

  • Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270–280

    PubMed  CAS  Google Scholar 

  • Morcuende R, Bari R, Gibon Y, Zheng WM, Pant BD, Blasing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, Scheible WR (2007) Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30:85–112

    PubMed  CAS  Google Scholar 

  • Müller K, Tintelnot S, Leubner-Metzger G (2006) Endosperm-limited Brassicaceae seed germination: abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol 47:864–877

    PubMed  Google Scholar 

  • Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41:697–709

    PubMed  CAS  Google Scholar 

  • Neuberger T, Sreenivasulu N, Rokitta M, Rolletschek H, Gobel C, Rutten T, Radchuk V, Feussner I, Wobus U, Jakob P, Webb A, Borisjuk L (2008) Quantitative imaging of oil storage in developing crop seeds. Plant Biotechnol J 6:31–45

    PubMed  CAS  Google Scholar 

  • Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T (2007) ABA-hypersensitive germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J 50:935–949

    PubMed  CAS  Google Scholar 

  • Noda K, Matsuura T, Maekawa M, Taketa S (2002) Chromosomes responsible for sensitivity of embryo to abscisic acid and dormancy in wheat. Euphytica 123:203–209

    CAS  Google Scholar 

  • Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung WI, Choi G (2006) Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J 47:124–139

    PubMed  CAS  Google Scholar 

  • Oh E, Yamaguchi S, Hu JH, Yusuke J, Jung B, Paik I, Lee HS, Sun TP, Kamiya Y, Choi G (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19:1192–1208

    PubMed  CAS  Google Scholar 

  • Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141:97–107

    PubMed  CAS  Google Scholar 

  • Oleykowski CA, Mullins CRB, Godwin AK, Yeung AT (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res 26:4597–4602

    PubMed  CAS  Google Scholar 

  • Ozdemir BS, Hernandez P, Filiz E, Budak H (2008) Brachypodium genomics. Int J Plant Genomics 2008:536104. doi:10.1155/2008/486258

    PubMed  Google Scholar 

  • Papi M, Sabatini S, Bouchez D, Camilleri C, Costantino P, Vittorioso P (2000) Identification and disruption of an Arabidopsis zinc finger gene controlling seed germination. Genes Dev 14:28–33

    PubMed  CAS  Google Scholar 

  • Parcy F, Valon C, Kohara A, Misera S, Giraudat J (1997) The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development. Plant Cell 9:1265–1277

    PubMed  CAS  Google Scholar 

  • Peeters AJM, Blankestijn-de Vries H, Hanhart CJ, Leon-Kloosterziel KM, Zeevaart JAD, Koornneef M (2002) Characterization of mutants with reduced seed dormancy at two novel rdo loci and a further characterization of rdo1 and rdo2 in Arabidopsis. Physiol Plant 115:604–612

    PubMed  CAS  Google Scholar 

  • Penfield S, Gilday AD, Halliday KJ, Graham IA (2006) DELLA-mediated cotyledon expansion breaks coat-imposed seed dormancy. Curr Biol 16:2366–2370

    PubMed  CAS  Google Scholar 

  • Penfield S, Graham I, Halliday K (2007) Control of seed dormancy and germination by environmental signals. Comp Biochem Physiol A-Mol Integrat Physiol 146:S274–S274

    Google Scholar 

  • Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D (2004) The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol 134:1598–1613

    PubMed  CAS  Google Scholar 

  • Romagosa I, Prada D, Moralejo MA, Sopena A, Munoz P, Casas AM, Swanston JS, Molina-Cano JL (2001) Dormancy, ABA content and sensitivity of a barley mutant to ABA application during seed development and after ripening. J Exp Bot 52:1499–1506

    PubMed  CAS  Google Scholar 

  • Russell L, Larner V, Kurup S, Bougourd S, Holdsworth M (2000) The Arabidopsis COMATOSE locus regulates germination potential. Development 127:3759–3767

    PubMed  CAS  Google Scholar 

  • Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia MP, Nicolas C, Lorenzo O, Rodriguez PL (2004) Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant J 37:354–369

    PubMed  CAS  Google Scholar 

  • Schwartz SH, Tan BC, Gage DA, Zeevaart JAD, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–1874

    PubMed  CAS  Google Scholar 

  • Seo M, Hanada A, Kuwahara A, Endo A, Okamoto M, Yamauchi Y, North H, Marion-Poll A, Sun TP, Koshiba T, Kamiya Y, Yamaguchi S, Nambara E (2006) Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant J 48:354–366

    PubMed  CAS  Google Scholar 

  • Shinomura T, Nagatani A, Chory J, Furuya M (1994) The induction of seed-germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A. Plant Physiol 104:363–371

    PubMed  CAS  Google Scholar 

  • Shinomura T, Nagatani A, Hanzawa H, Kubota M, Watanabe M, Furuya M (1996) Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci USA 93:8129–8133

    PubMed  CAS  Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    PubMed  CAS  Google Scholar 

  • Sreenivasulu N, Usadel B, Winter A, Radchuk V, Scholz U, Stein N, Weschke W, Strickert M, Close TJ, Stitt M, Graner A, Wobus U (2008) Barley grain maturation and germination: Metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol 146:1738–1758

    PubMed  CAS  Google Scholar 

  • Steber CM, Cooney SE, McCourt P (1998) Isolation of the GA-response mutant sly1 as a suppressor of ABI1-1 in Arabidopsis thaliana. Genetics 149:509–521

    PubMed  CAS  Google Scholar 

  • Sun TP, Goodman HM, Ausubel FM (1992) Cloning the Arabidopsis Ga1 locus by genomic subtraction. Plant Cell 4:119–128

    PubMed  CAS  Google Scholar 

  • Tamura N, Yoshida T, Tanaka A, Sasaki R, Bando A, Toh S, Lepiniec L, Kawakami N (2006) Isolation and characterization of high temperature-resistant germination mutants of Arabidopsis thaliana. Plant Cell Physiol 47:1081–1094

    PubMed  CAS  Google Scholar 

  • Tan BC, Joseph LM, Deng WT, Liu LJ, Li QB, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35:44–56

    PubMed  CAS  Google Scholar 

  • Till BJ, Zerr T, Comai L, Henikoff S (2006) A protocol for TILLING and Ecotilling in plants and animals. Nature Protocols 1:2465–2477

    PubMed  CAS  Google Scholar 

  • Ullrich SE, Hayes PM, Dyer WE, Blake TK, Clancy JA (1993) Quantitative trait locus analysis of seed dormancy in ‘Steptoe’ barley. In: Walker-Simmon, Ried JL (eds) Pre-harvest sprouting in cereals 1992. Am Assoc Cereal Chem, St Paul, MN, pp 136–145

    Google Scholar 

  • van der Schaar W, AlonsoBlanco C, LeonKloosterziel KM, Jansen RC, VanOoijen JW, Koornneef M (1997) QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping. Heredity 79:190–200

    Google Scholar 

  • Walker-Simmons M (1987) ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol 84:61–66

    PubMed  CAS  Google Scholar 

  • Wilkinson MD, McKibbin RS, Bailey PC, Flintham JE, Gale MD, Lenton JR, Holdsworth MJ (2002) Use of comparative molecular genetics to study pre harvest sprouting in wheat. Euphytica 126:27–33

    CAS  Google Scholar 

  • Yamaguchi S, Smith MW, Brown RGS, Kamiya Y, Sun TP (1998) Phytochrome regulation and differential expression of gibberellin 3 β-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell 10:2115–2126

    PubMed  CAS  Google Scholar 

  • Yamaguchi S, Kamiya Y, Nambara E (2007) Regulation of ABA and GA levels during seed development and germination in Arabidopsis. In: Bradford K, Nonogaki H (eds) Seed development, dormancy and germination. Blackwell, Oxford, pp 224–247

    Google Scholar 

  • Yang PF, Li XJ, Wang XQ, Chen H, Chen F, Shen SH (2007) Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 7:3358–3368

    PubMed  CAS  Google Scholar 

  • Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y, Sun TP (2007) Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19:3037–3057

    PubMed  CAS  Google Scholar 

  • Zhang XR, Garreton V, Chua NH (2005) The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev 19:1532–1543

    PubMed  CAS  Google Scholar 

  • Zhang X-Q, Li C, Tay A, Lance R, Mares D, Cheong J, Cakir M, Ma J, Appels R (2008) A new PCR-based marker on chromosome 4AL for resistance to pre-harvest sprouting in wheat (Triticum aestivum L.). Mol Breed (in press). doi:10.1007/s11032-008-9169-3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Barrero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barrero, J.M., Jacobsen, J., Gubler, F. (2010). Seed Dormancy: Approaches for Finding New Genes in Cereals. In: Pua, E., Davey, M. (eds) Plant Developmental Biology - Biotechnological Perspectives. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02301-9_18

Download citation

Publish with us

Policies and ethics