Skip to main content

Viral DNA Packaging: One Step at a Time

  • Chapter
  • First Online:
Single Molecule Spectroscopy in Chemistry, Physics and Biology

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 96))

Summary

During its life-cycle the bacteriophage φ29 actively packages its dsDNA genome into a proteinacious capsid, compressing its genome to near crystalline densities against large electrostatic, elastic, and entropic forces. This remarkable process is accomplished by a nano-scale, molecular DNA pump – a complex assembly of three protein and nucleic acid rings which utilizes the free energy released in ATP hydrolysis to perform the mechanical work necessary to overcome these large energetic barriers. We have developed a single molecule optical tweezers assay which has allowed us to probe the detailed mechanism of this packaging motor. By following the rate of packaging of a single bacteriophage as the capsid is filled with genome and as a function of optically applied load, we find that the compression of the genome results in the build-up of an internal force, on the order of ∼ 55 pN, due to the compressed genome. The ability to work against such large forces makes the packaging motor one of the strongest known molecular motors. By titrating the concentration of ATP, ADP, and inorganic phosphate at different opposing load, we are able to determine features of the mechanochemistry of this motor – the coupling between the mechanical and chemical cycles. We find that force is generated not upon binding of ATP, but rather upon release of hydrolysis products. Finally, by improving the resolution of the optical tweezers assay, we are able to observe the discrete increments of DNA encapsidated each cycle of the packaging motor. We find that DNA is packaged in 10-bp increments preceded by the binding of multiple ATPs. The application of large external forces slows the packaging rate of the motor, revealing that the 10-bp steps are actually composed of four 2.5-bp steps which occur in rapid succession. These data show that the individual subunits of the pentameric ring-ATPase at the core of the packaging motor are highly coordinated, with the binding of ATP and the translocation of DNA temporally segregated into two distinct phases of the mechanochemical cycle of the entire ring. Because this ring-ATPase is a member of the ASCE superfamily of ATPases, these results may have implications for a broad and diverse family of cellular motors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Bustamante, J.C. Macosko, G.J. Wuite, Nat. Rev. Mol. Cell Biol. 1, 130–136 (2000)

    Article  Google Scholar 

  2. Molecular Motors. ed. by Schliwa M. Weinham (Wiley-VCH Verlay GmbH & Co, 2003)

    Google Scholar 

  3. K. Kinosita, K. Adachi, H. Itoh, Annu. Rev. Biophys. Biomol. Struct. 33, 245–268 (2004)

    Article  Google Scholar 

  4. L. Bai, T.J. Santangelo, M.D. Wang, Annu. Rev. Biophys. Biomol. Struct. 35, 343–360 (2006)

    Article  Google Scholar 

  5. K.M. Herbert, W.J. Greenleaf, S.M. Block, Annu. Rev. Biochem. 77, 149–176 (2008)

    Article  Google Scholar 

  6. C. Bustamante, L. Finzi, P. Sebring, S. Smith, SPIE Proc. Ser. 1435, 179–187 (1991)

    Article  ADS  Google Scholar 

  7. S.B. Smith, L. Finzi, C. Bustamante, Science 258, 1122–1126 (1992)

    Article  ADS  Google Scholar 

  8. W.E. Moerner, L. Kador, Phys. Rev. Lett. 62, 2535–2538 (1989)

    Article  ADS  Google Scholar 

  9. M. Orrit, J. Bernard, Phys. Rev. Lett. 65, 2716–2719 (1990)

    Article  ADS  Google Scholar 

  10. E. Betzig, R.J. Chichester, Science 262, 1422–1425 (1993)

    Article  ADS  Google Scholar 

  11. S. Grimes, P.J. Jardine, D. Anderson, Adv Virus Res. 58, 255–294 (2002)

    Article  Google Scholar 

  12. J.P. Erzberger, J.M. Berger, Annu. Rev. Biophys. Biomol. Struct. 35, 93–114 (2006)

    Article  Google Scholar 

  13. L.M. Iyer, D.D. Leipe, E.V. Koonin, L. Aravind, J. Struct. Biol. 146, 11–31 (2004)

    Google Scholar 

  14. T. Ogura, A.J. Wilkinson, Genes Cells 6, 575–597 (2001)

    Article  Google Scholar 

  15. M. Latterich, S. Patel, Trends Cell Biol. 8, 65 (1998)

    Article  Google Scholar 

  16. D.E. Kainov, R. Tuma, E.J. Mancini, Cell Mol. Life Sci. 63, 1095–1105 (2006)

    Article  Google Scholar 

  17. K.P. Hopfner, J. Michaelis, Curr. Opin. Struct. Biol. 17, 87–95 (2007)

    Article  Google Scholar 

  18. N.D. Thomsen, J.M. Berger, Mol. Microbiol. 69, 1071–1090 (2008)

    Article  Google Scholar 

  19. E.J. Enemark, L. Joshua-Tor, Curr. Opin. Struct. Biol. 18, 243 (2008)

    Google Scholar 

  20. D.J. Crampton, S. Mukherjee, C.C. Richardson, Mol. Cell. 21, 165–174 (2006)

    Article  Google Scholar 

  21. T.H. Massey, C.P. Mercogliano, J. Yates, D.J. Sherratt, J. Löwe, Mol. Cell. 23, 457 (2006)

    Article  Google Scholar 

  22. E.J. Enemark, L. Joshua-Tor, Nature 442, 270 (2006)

    Article  ADS  Google Scholar 

  23. J.L. Adelman, Y.J. Jeong, J.C. Liao, G. Patel, D.E. Kim, G. Oster, S.S. Patel, Mol. Cell. 22, 611 (2006)

    Article  Google Scholar 

  24. E. Skordalakes, J.M. Berger, Cell. 127, 553–564 (2006)

    Article  Google Scholar 

  25. J.C. Liao, Y.J. Jeong, D.E. Kim, S.S. Patel, G. Oster, J. Mol. Biol. 350, 452 (2005)

    Article  Google Scholar 

  26. E.J. Mancini, D.E. Kainov, J.M. Grimes, R. Tuma, D.H. Bamford, D.I. Stuart, Cell 118, 743–755 (2004)

    Article  Google Scholar 

  27. M.R. Singleton, M.R. Sawaya, T. Ellenberger, D.B. Wigley, Cell 101, 589–600 (2000)

    Article  Google Scholar 

  28. M.J. Moreau, A.T. McGeoch, A.R. Lowe, L.S. Itzhaki, S.D. Bell, Mol. Cell. 28, 304 (2007)

    Article  Google Scholar 

  29. D. Gai, R. Zhao, D. Li, C.V. Finkielstein, X.S. Chen, Cell 119, 47–60 (2004)

    Article  Google Scholar 

  30. A. Martin, T.A. Baker, R.T. Sauer, Nature 437, 1115 (2005)

    Article  ADS  Google Scholar 

  31. S.E. Luria, T.F. Anderson, Proc. Natl. Acad. Sci. U S A. 28, 127–130 121 (1942) ∗ ∗ 

    Google Scholar 

  32. S.E. Luria, M. Delbruck, T.F. Anderson, J. Bacteriol. 46, 57–77 (1943)

    Google Scholar 

  33. R.B. Luftig, W.B. Wood, R. Okinaka, J. Mol. Biol. 57, 555–573 (1971)

    Google Scholar 

  34. D. Kaiser, M. Syvanen, T. Masuda, J. Supramol. Struct. 2, 318–328 (1974)

    Google Scholar 

  35. D. Kaiser, M. Syvanen, T. Masuda, J. Mol. Biol. 91, 175–186 (1975)

    Google Scholar 

  36. C. Bazinet, J. King, Annu. Rev. Microbiol. 39, 109–129 (1985)

    Article  Google Scholar 

  37. L.W. Black, Annu. Rev. Microbiol. 43, 267–292 (1989)

    Article  Google Scholar 

  38. D.E. Smith, S.J. Tans, S.B. Smith, S. Grimes, D.L. Anderson, C. Bustamante, Nature 413, 748–752 (2001)

    Article  ADS  Google Scholar 

  39. M.C. Morais, J.S. Koti, V.D. Bowman, E. Reyes-Aldrete, D.L. Anderson, M.G. Rossmann, Structure 16, 1267 (2008)

    Article  Google Scholar 

  40. L.M. Iyer, K.S. Makarova, E.V. Koonin, L. Aravind, Nucleic Acids Res. 32, 5260–5279 (2004)

    Article  Google Scholar 

  41. A.M. Burroughs, L.M. Iyer, L. Aravind, In Gene and Protein Evolution. ed. by Volff J-N: Karger; 48–65. vol 3,] (2007). ∗ ∗ 

    Google Scholar 

  42. A.A. Simpson, P.G. Leiman, Y. Tao, Y. He, M.O. Badasso, P.J. Jardine, D.L. Anderson, M.G. Rossmann, Acta Crystallogr. D Biol. Crystallogr. 57, 1260–1269 (2001)

    Article  Google Scholar 

  43. R.W. Hendrix, Proc. Natl. Acad. Sci. 75, 4779–4783 (1978)

    Article  ADS  Google Scholar 

  44. T. Hugel, J. Michaelis, C.L. Hetherington, P.J. Jardine, S. Grimes, J.M. Walter, W. Falk, D.L. Anderson, C. Bustamante, PLoS Biol. 5, e59 (2007)

    Article  Google Scholar 

  45. P.J. Pease, O. Levy, G.J. Cost, J. Gore, J.L. Ptacin, D. Sherratt, C. Bustamante, N.R. Cozzarelli, Science 307, 586–590 (2005)

    Article  ADS  Google Scholar 

  46. O.A. Saleh, C. Perals, F.X. Barre, J.F. Allemand, EMBO J. 23, 2430–2439 (2004)

    Article  Google Scholar 

  47. C. Bustamante, S.B. Smith, J. Liphardt, D. Smith, Curr. Opin. Struct. Biol. 10, 279–285 (2000)

    Article  Google Scholar 

  48. C. Bustamante, J.F. Marko, E.D. Siggia, S. Smith, Science 265, 1599–1600 (1994)

    Article  ADS  Google Scholar 

  49. J.P. Rickgauer, D.N. Fuller, S. Grimes, P.J. Jardine, D.L. Anderson, D.E. Smith, Biophys. J. 94, 159–167 (2008)

    Article  Google Scholar 

  50. A. Evilevitch, L. Lavelle, C.M. Knobler, E. Raspaud, W.M. Gelbart, Proc. Natl. Acad. Sci. U S A. 100, 9292–9295 (2003)

    Article  ADS  Google Scholar 

  51. P. Grayson, L. Han, T. Winther, R. Phillips, Proc. Natl. Acad. Sci. U S A. 104, 14652–14657 (2007)

    Article  ADS  Google Scholar 

  52. P. Grayson, A. Evilevitch, M.M. Inamdar, P.K. Purohit, W.M. Gelbart, C.M. Knobler, R. Phillips, Virology 348, 430–436 (2006)

    Article  Google Scholar 

  53. P.K. Purohit, M.M. Inamdar, P.D. Grayson, T.M. Squires, J. Kondev, R. Phillips, Biophys. J. 88, 851–866 (2005)

    Article  Google Scholar 

  54. M.S.J.M.H. Víctor González-Huici, Mol. Microbiol. 52, 529–540 (2004)

    Google Scholar 

  55. Y.R. Chemla, K. Aathavan, J. Michaelis, S. Grimes, P.J. Jardine, D.L. Anderson, C. Bustamante, Cell 122, 683–692 (2005)

    Article  Google Scholar 

  56. C. Bustamante, Y.R. Chemla, N.R. Forde, D. Izhaky, Annu. Rev. Biochem. 73, 705–748 (2004)

    Article  Google Scholar 

  57. D. Keller, C. Bustamante, Biophys. J. 78, 541–556 (2000)

    Article  Google Scholar 

  58. G. Oster, H. Wang, Biochim. Biophys. Acta. 1458, 482–510 (2000)

    Article  Google Scholar 

  59. C. Chen, P. Guo, J. Virol. 71, 3864–3871 (1997)

    Google Scholar 

  60. P. Guo, C. Peterson, D. Anderson, J. Mol. Biol. 197, 229–236 (1987)

    Google Scholar 

  61. I. Donmez, S.S. Patel, EMBO J. 27, 1718–1726 (2008)

    Article  Google Scholar 

  62. D.E. Kainov, E.J. Mancini, J. Telenius, J. Lisal, J.M. Grimes, D.H. Bamford, D.I. Stuart, R. Tuma, J. Biol. Chem. 283, 3607–3617 (2008)

    Google Scholar 

  63. A. Wynveen, D.J. Lee, A.A. Kornyshev, S. Leikin, Nucleic Acids Res. 36, 5540–5551 (2008)

    Article  Google Scholar 

  64. J.R. Moffitt, Y.R. Chemla, S.B. Smith, C. Bustamante, Annu. Rev. Biochem. 77, 205–228 (2008)

    Article  Google Scholar 

  65. C. Bustamante, Y.R. Chemla, J.R. Moffitt, in Single-Molecule Techniques: A Laboratory Manual. ed. by Selvin PR, Ha T (Cold Spring Harbor Laboratories, 2008)pp. 297–324

    Google Scholar 

  66. J.R. Moffitt, Y.R. Chemla, D. Izhaky, C. Bustamante, Proc. Natl. Acad. Sci. 103, 9006–9011 (2006)

    Article  ADS  Google Scholar 

  67. E.A. Abbondanzieri, W.J. Greenleaf, J.W. Shaevitz, R. Landick, S.M. Block, Nature 438, 460 (2005)

    Article  ADS  Google Scholar 

  68. J.W. Shaevitz, E.A. Abbondanzieri, R. Landick, S.M. Block, Nature 426, 684 (2003)

    Article  ADS  Google Scholar 

  69. A.R. Carter, G.M. King, T.A. Ulrich, W. Halsey, D. Alchenberger, T.T. Perkins, Appl. Opt. 46, 421–427 (2007)

    Article  ADS  Google Scholar 

  70. L. Nugent-Glandorf, T.T. Perkins, Opt. Lett. 29, 2611–2613 (2004)

    Article  ADS  Google Scholar 

  71. F. Gittes, C.F. Schmidt, Eur. Biophys. J. Biophys. Lett. 27, 75–81 (1998)

    Google Scholar 

  72. J.C. Meiners, S.R. Quake, Phys. Rev. Lett. 84, 5014–5017 (2000)

    Article  ADS  Google Scholar 

  73. D.N. Fuller, J.P. Rickgauer, P.J. Jardine, S. Grimes, D.L. Anderson, D.E. Smith, Proc. Natl. Acad. Sci. U S A. 104, 11245–11250 (2007)

    Article  ADS  Google Scholar 

  74. J.R. Moffitt, Y.R. Chemla, K. Aathavan, S. Grimes, P.J. Jardine, D. Anderson, C. Bustamante, Nature 457, 446–450 (2009)

    Article  ADS  Google Scholar 

  75. S.M. Block, K. Svoboda, Biophys. J. 68, 2305S–2415 (1995)

    Google Scholar 

  76. B.C. Carter, M. Vershinin, S.P. Gross, Biophys. J. 94, 306–319 (2008)

    Article  Google Scholar 

  77. N.J. Carter, R.A. Cross, Nature 435, 308 (2005)

    Article  ADS  Google Scholar 

  78. I.H. Segel, Enzyme Kinetics. (John Wiley & Sons, Inc., 1975)

    Google Scholar 

  79. M.J. Schnitzer, S.M. Block, Cold Spring Harb. Symp. Quant. Biol. 60, 793–802 (1995)

    Google Scholar 

  80. Z. Koza, Phys. Rev. E. 65, 031905 (2002)

    Article  ADS  Google Scholar 

  81. Y.R. Chemla, J.R. Moffitt, C. Bustamante, J. Phys. Chem. B. 112, 6025–6044 (2008)

    Article  Google Scholar 

  82. H. Mao, J.R. Arias-Gonzalez, S.B. Smith, I. Tinoco, Jr., C. Bustamante, Biophys. J. 89, 1308–1316 (2005)

    Article  Google Scholar 

  83. L. Kellner, Proc. R. Soc. Lond. Ser.Math. Phys. Sci. 159, 0410–0415 (1937)

    Google Scholar 

  84. B.E. Reilly, J. Spizizen, J. Bacteriol. 89, 782–790 (1965)

    Google Scholar 

  85. D.L. Anderson, D.D. Hickman, B.E. Reilly, J. Bacteriol. 91, 2081–2089 (1966)

    Google Scholar 

  86. W.J.J. Meijer, J.A. Horcajadas, M. Salas, Microbiol. Mol. Biol. Rev. 65, 261–287 (2001)

    Article  Google Scholar 

  87. S.B. Smith, Y. Cui, C. Bustamante, Science 271, 795–799 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.R.M acknowledges the National Science Foundation’s Graduate Research Fellowship for support. This work was supported in part by NIH grants GM-071552, DE-003606, and GM-059604, and DOE grant DE-AC03–76DF00098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Bustamante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bustamante, C., Moffitt, J.R. (2010). Viral DNA Packaging: One Step at a Time. In: Gräslund, A., Rigler, R., Widengren, J. (eds) Single Molecule Spectroscopy in Chemistry, Physics and Biology. Springer Series in Chemical Physics, vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02597-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02597-6_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02596-9

  • Online ISBN: 978-3-642-02597-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics