Skip to main content

Tissue Engineering of Organs: Brain Tissues

  • Chapter
  • First Online:
Tissue Engineering

Abstract

Brain tissue engineering (BTE) involves the application of a combination of replacement cells, synthetic scaffolds, and biomolecules to restore and repair damaged neuronal pathways. This strategy is of particular biological importance because of the limited capacity for self-repair in the brain following disease and/or injury, and the severe impact on the quality of life of affected patients.

In BTE approaches that are on the basis of the use of scaffolds, neuronal repair must be preceded by an ability of the implanted scaffold to integrate with the host brain tissue, suppress the extent of inflammation at the injury site, and to provide a permissive and instructive environment for neuronal regeneration. Most scaffold design strategies attempt to simulate the molecular and structural features of the native extracellular microenvironment that facilitate neuronal regeneration. Currently, the ability to engineer these types of scaffolds down to the nano-scale enables a much greater degree of biomimicry of tissue architecture. This in turn promises to provide finer control over cell-scaffold interactions, and subsequent cell behavior including contact-mediated migration and neuronal differentiation. The ideal BTE scaffold must have appropriate porosity and three-dimensional (3D) architecture to permit cell infiltration and proliferation, as well as to provide a physical platform to maintain the intrinsic tissue architecture. Such scaffolds can be further functionalized with bioactive extracellular matrix molecules or signaling proteins to influence cell behavior. In addition, scaffolds can provide a means of encapsulating exogenous neuronal support cells for delivery to local injury sites to encourage regeneration.

The extensive research toward understanding and optimizing bio-engineered scaffolds for neuronal regeneration applications promises to lead to more prominent therapeutic approaches for various brain diseases and injuries. Despite the many hurdles that remain in translating promising in vitro and in vivo results into functional recovery in clinically relevant models of brain disease and injury, it is anticipated that BTE will provide a more targeted treatment approach for efficient recovery with fewer side effects, an alternative to currently available treatment modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams DN, Kao EYC, Hypolite CL, et al. Growth cones turn and migrate up an immobilized gradient of the laminin IKVAV peptide. J Neurobiol. 2004;62:134–47.

    Article  CAS  Google Scholar 

  2. Aloisi F. Immune function of microglia. Glia. 2001;36:165–79.

    Article  CAS  PubMed  Google Scholar 

  3. Alvarez-Buylla A, Lim DA. For the long run: maintaining germinal niches in the adult brain. Neuron. 2004;41(5): 683–6.

    Article  CAS  PubMed  Google Scholar 

  4. Alvarez-Buylla A, Temple S. Stem cells in the developing and adult nervous system. J Neurobiol. 1998;36(2): 105–10.

    Article  CAS  PubMed  Google Scholar 

  5. Anderson RB, Key B. Novel guidance cues during neuronal pathfinding in the early scaffold of axon tracts in the rostral brain. Development. 1999;126(9):1859–68.

    CAS  PubMed  Google Scholar 

  6. Balgude AP, Yu X, Szymanski A, et al. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials. 2001;22:1077–84.

    Google Scholar 

  7. Batchelor PE, Howells DW. CNS regeneration: clinical possibility or basic science fantasy? J Clin Neurosci. 2003;10(5):523–34.

    Article  PubMed  Google Scholar 

  8. Bertrand N, Castro DS, Guillemot F. Proneural genes and the specification of neural cell types. Nat Rev Neurosci. 2002;3(7):517–30.

    Article  CAS  PubMed  Google Scholar 

  9. Biran R, Noble MD, Tresco PA. Directed nerve outgrowth is enhanced by engineered glial substrates. Exp Neurol. 2003;184(1):141–52.

    Article  CAS  PubMed  Google Scholar 

  10. Björklund A, Dunnett SB, Stenevi U, et al. Reinnervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res. 1980;199(2):307–33.

    Article  PubMed  Google Scholar 

  11. Björklund A, Stenevi U. Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res. 1979;177(3):555–60.

    Article  PubMed  Google Scholar 

  12. Bjorklund LM, Sanchez-Pernaute R, Chung S, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci. 2002;99:2344–9.

    Article  CAS  PubMed  Google Scholar 

  13. Boland T, Mironov V, Gutowska A, et al. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A Discov Mol Cell Evol Biol. 2003;272:497–502.

    Article  PubMed  Google Scholar 

  14. Boland T, Tao X, Damon B, et al. Application of inkjet printing to tissue engineering. Biotechnol J. 2006;1:910–7.

    Article  CAS  PubMed  Google Scholar 

  15. Braak H, Del Tredici K. Assessing fetal nerve cell grafts in Parkinson’s disease. Nat Med. 2008;14(5):483–5.

    Article  CAS  PubMed  Google Scholar 

  16. Braak H, Del Tredici K. Cortico-basal ganglia-cortical circuitry in Parkinson’s disease reconsidered. Exp Neurol. 2008;212(1):226–9.

    Article  PubMed  Google Scholar 

  17. Britland S, Perridge C, Denyer M, et al. Morphogenetic guidance cues can interact synergistically and hierarchically in steering nerve cell growth. Exp Biol Online. 1996;1(2):1–15.

    Google Scholar 

  18. Brundin P, Isacson O, Gage FH, et al. Intrastriatal grafting of dopamine-containing neuronal cell suspensions: effects of mixing with target or non-target cells. Brain Res. 1986;389:77–84.

    CAS  PubMed  Google Scholar 

  19. Cao X, Shoichet MS. Defining the concentration gradient of nerve growth factor for guided neurite outgrowth. Neuroscience. 2001;103(3):831–40.

    Article  CAS  PubMed  Google Scholar 

  20. Carleton A, Petreanu LT, Lansford R, et al. Becoming a new neuron in the adult olfactory bulb. Nat Neurosci. 2003;6:507–18.

    CAS  PubMed  Google Scholar 

  21. Cheng M, Deng J, Yang F, et al. Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials. 2003;24(17):2871–80.

    Article  CAS  PubMed  Google Scholar 

  22. Cheng S, Clarke EC, Bilston LE. Rheological properties of the tissues of the central nervous system: a review. Med Eng Phys. 2008;30(10):1318–37.

    Article  PubMed  Google Scholar 

  23. Chew SY, Mi R, Hoke A, et al. Aligned protein-polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform. Adv Funct Mater. 2007;17:1288–96.

    Article  CAS  PubMed  Google Scholar 

  24. Chew SY, Mi R, Hoke A, et al. The effect of the alignment of electrospun fibrous scaffolds on schwann cell maturation. Biomaterials. 2008;29:653–61.

    Article  CAS  PubMed  Google Scholar 

  25. Chew SY, Mi R, Hoke A, et al. The effect of the alignment of electrospun fibrous scaffolds on schwann cell maturation. Biomaterials. 2008;29:653–61.

    Article  CAS  PubMed  Google Scholar 

  26. Christopherson GT, Song H, Mao H-Q. The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials. 2009;30(4):556–64.

    Article  CAS  PubMed  Google Scholar 

  27. Crompton KE, Goud JD, Bellamkonda RV, et al. Polylysine-functionalized thermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials. 2007;28:441–9.

    Article  CAS  PubMed  Google Scholar 

  28. Crompton KE, Prankerd RJ, Paganin DM, et al. Morphology and gelation of thermosensitive chitosan hydrogels. Biophys Chem. 2005;117:45–53.

    Article  CAS  Google Scholar 

  29. Crompton KE, Tomas D, Finkelstein DI, et al. Inflammatory response on injection of chitosan/GP to the brain. J Mater Sci Mater Med. 2006;17:633–9.

    Article  CAS  PubMed  Google Scholar 

  30. Cui FZ, Tian WM, Fan YW, et al. Cerebrum repair with PHPMA hydrogel immobilized with neurite-promoting peptides in traumatic brain injury of adult rat model. J Bioact Compat Polym. 2003;18(6):413–32.

    Article  CAS  Google Scholar 

  31. Cui FZ, Tian WM, Hou SP, et al. Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering. J Mater Sci Mater Med. 2006;17:1393–401.

    Article  CAS  PubMed  Google Scholar 

  32. Dalton PD, Klee D, Moller M. Electrospinning with dual collection rings. Polymer. 2005;46:611–4.

    Article  CAS  Google Scholar 

  33. Debellard M-E, Tang S, Mukhopadhyay G, et al. Myelin-associated glycoprotein inhibits axonal regeneration from a variety of neurons via interaction with a sialoglycoprotein. Mol Cell Neurosci. 1996;7(2):89–101.

    Article  CAS  PubMed  Google Scholar 

  34. Dertinger SKW, Jiang X, Li Z, et al. Gradients of substrate-bound laminin orient axonal specifications of neurons. Proc Natl Acad Sci. 2002;99(20):12542–7.

    Article  CAS  PubMed  Google Scholar 

  35. Dhoot NO, Tobias CA, Fischer I, et al. Peptide-modified alginate surfaces as a growth permissive substrate for neurite outgrowth. J Biomed Mater Res A. 2004;71A(2): 191–200.

    Article  CAS  Google Scholar 

  36. Dickson BJ. Molecular mechanisms of axon guidance. Science. 2002;298:1959–64.

    Article  CAS  PubMed  Google Scholar 

  37. Doetsch F. A niche for adult neural stem cells. Curr Opin Genet Dev. 2003;13(5):543–50.

    Article  CAS  PubMed  Google Scholar 

  38. Duconseille E, Carrot S-N, Woerly S, et al. Homotopic grafts of septal neurons combined to polymeric hydrogels placed into a fimbria-fornix lesion cavity attenuate locomotor hyperactivity but not mnemonic dysfunctions in rats. Restor Neurol Neurosci. 2001;18:39–51.

    CAS  PubMed  Google Scholar 

  39. Duconseille E, Woerly S, Kelche C, et al. Polymeric hydrogels placed into a fimbria-fornix lesion cavity promote fiber (re)growth: a morphological study in the rat. Restor Neurol Neurosci. 1998;13:193–203.

    CAS  PubMed  Google Scholar 

  40. Ellis-Behnke RG, Liang Y-X, You S-W, et al. Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci. 2006;103:5054–9.

    Article  CAS  PubMed  Google Scholar 

  41. Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Google Scholar 

  42. Faulkner JR, Herrmann JE, Woo MJ, et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci. 2004;24(9):2143–55.

    Article  CAS  PubMed  Google Scholar 

  43. Flanagan LA, Ju Y-E, Marg B, et al. Neurite branching on deformable substrates. Neuroreport. 2002;13(18): 2411–5.

    Article  PubMed  Google Scholar 

  44. Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med. 2001;344(10):710–9.

    Article  CAS  PubMed  Google Scholar 

  45. Gage FH. Mammalian neural stem cells. Science. 2000;287(5457):1433–8.

    Article  CAS  PubMed  Google Scholar 

  46. Gage FH, Kempermann G, Palmer TD, et al. Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol. 1998;36(2):249–66.

    Article  CAS  PubMed  Google Scholar 

  47. Gehrmann J, Matsumoto Y, Kreutzberg GW. Microglia: intrinsic immuneffector cell of the brain. Brain Res Rev. 1995;20(3):269–87.

    Article  CAS  PubMed  Google Scholar 

  48. Georges PC, Miller WJ, Meaney DF, et al. Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys J. 2006;90:3012–8.

    Article  CAS  PubMed  Google Scholar 

  49. Gerecht S, Burdick JA, Ferreira LS, et al. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci. 2007;104(27):11298–303.

    Article  CAS  PubMed  Google Scholar 

  50. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, et al. Electrospun poly(caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29(34):4532–9.

    Article  CAS  PubMed  Google Scholar 

  51. Glezer I, Simard AR, Rivest S. Neuroprotective role of the innate immune system by microglia. Neuroscience. 2007;147(4):867–83.

    Google Scholar 

  52. Gong HP, Zhong YH, Li JC, et al. Studies on nerve cell affinity of chitosan-derived materials. J Biomed Mater Res. 2000;52:285.

    Google Scholar 

  53. Green M, Bilston L, Sinkus R. In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed. 2008;21:755–64.

    Article  PubMed  Google Scholar 

  54. Hamhaber U, Sack I, Papazoglou S, et al. Three-dimensional analysis of shear wave propagation observed by in vivo magnetic resonance elastography of the brain. Acta Biomater. 2007;3(1):27–37.

    Article  Google Scholar 

  55. He L, Liao S, Quan D, et al. The influence of laminin-derived peptides conjugated to Lys-capped PLLA on neonatal mouse cerebellum C17.2 stem cells. Biomaterials. 2009;30(8):1578–86.

    Google Scholar 

  56. Hodgkinson GN, Tresco PA, Hlady V. The differential influence of colocalized and segregated dual protein signals on neurite outgrowth on surfaces. Biomaterials. 2007;28: 2590–602.

    Article  CAS  PubMed  Google Scholar 

  57. Hoffman LM, Carpenter MK. Characterization and culture of human embryonic stem cells. Nat Biotechnol. 2005;23(6):699–708.

    Article  CAS  PubMed  Google Scholar 

  58. Holmes TC, Delacalle S, Su X, et al. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci. 2000;97:6728–33.

    Article  CAS  PubMed  Google Scholar 

  59. Horne MK, Nisbet DR, Forsythe JS, et al. Three-Dimensional Nanofibrous Scaffolds Incorporating Immobilized BDNF Promote Proliferation and Differentiation of Cortical Neural Stem Cells. Stem Cells and Development. 2010;19(6):843–852.

    Article  CAS  PubMed  Google Scholar 

  60. Hou S, Xu Q, Tian W, et al. The repair of brain lesion by implantation of hyaluronic acid hydrogels modified with laminin. J Neurosci Methods. 2005;148(1):60–70.

    Article  CAS  PubMed  Google Scholar 

  61. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677–736.

    Article  CAS  PubMed  Google Scholar 

  62. Hubbell JA. Bioactive biomaterials. Curr Opin Biotechnol. 1999;10(2):123–9.

    Article  CAS  PubMed  Google Scholar 

  63. Huber AB, Kolodkin AL, Ginty DD, et al. Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Ann Rev Neurosci. 2003;26: 509–63.

    Google Scholar 

  64. Ilkhanizadeh S, Teixeira AI, Hermanson O. Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials. 2007;28:3936–43.

    Google Scholar 

  65. Ishikawa N, Suzuki Y, Ohta M, et al. Peripheral nerve regeneration through the space formed by a chitosan gel sponge. J Biomed Mater Res A. 2007;83A(1):33–40.

    Article  CAS  Google Scholar 

  66. Itoh S, Suzuki M, Yamaguchi I, et al. Development of a nerve scaffold using a tendon chitosan tube. Artif Organs. 2003;27(12):1079–88.

    Article  PubMed  Google Scholar 

  67. Itoh S, Yamaguchi I, Suzuki M, et al. Hydroxyapatite-coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo. Brain Res. 2003;993(1–2): 111–23.

    Article  CAS  PubMed  Google Scholar 

  68. Jiang FX, Yurke B, Firestein BL, et al. Neurite outgrowth on a DNA crosslinked hydrogel with tunable stiffness. Ann Biomed Eng. 2008;36(9):1565–79.

    Article  PubMed  Google Scholar 

  69. Jiang X, Georges PC, Li B, et al. Cell growth in response to mechanical stiffness is affected by neuron-astroglia interactions. Open Neurosci J. 2007;1:7–14.

    CAS  Google Scholar 

  70. Johnson PW, Abramow-Newerly W, Seilheimer B, et al. Recombinant myelin-associated glycoprotein confers neural adhesion and neurite outgrowth function. Neuron. 1989;3(3): 377–85.

    Article  CAS  PubMed  Google Scholar 

  71. Kapur TA, Shoichet MS. Immobilized concentration gradients of nerve growth factor guide neurite outgrowth. J Biomed Mater Res A. 2004;68(2):235–43.

    Article  PubMed  CAS  Google Scholar 

  72. Keenan TM, Folch A. Biomolecular gradients in cell culture systems. Lab Chip. 2008;8:34–57.

    Article  CAS  PubMed  Google Scholar 

  73. Kim Y-T, Haftel VK, Kumar S, et al. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials. 2008;29:3117–27.

    Article  CAS  PubMed  Google Scholar 

  74. Koh HS, Yong T, Chan CK, et al. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials. 2008;29:3574–82.

    Article  CAS  PubMed  Google Scholar 

  75. Kordower JH, Chu Y, Hauser RA, et al. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med. 2008;14(5):504–6.

    Article  CAS  PubMed  Google Scholar 

  76. Kordower JH, Rosenstein JM, Collier TJ, et al. Functional fetal nigral grafts in a patient with Parkinson’s disease: chemoanatomic, ultrastructural, and metabolic studies. J Comp Neurol. 1996;370:203–30.

    Google Scholar 

  77. Le HP. Progress and trends in ink-jet printing technology. J Imaging Sci Technol. 1998;42(1):49–62.

    CAS  Google Scholar 

  78. Leach JB, Brown XQ, Jacot JG, et al. Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. J Neural Eng. 2007;4:26–34.

    Article  PubMed  Google Scholar 

  79. Li D, Wang Y, Xia Y. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett. 2003;3(8):1167–71.

    Article  CAS  Google Scholar 

  80. Li J-Y, Englund E, Holton JL, et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med. 2008;14(5): 501–3.

    Article  CAS  PubMed  Google Scholar 

  81. Lindvall O, Björklund A. Dopaminergic innervation of the globus pallidus by collaterals from the nigrostriatal pathway. Brain Res. 1979;172(1):169–73.

    Article  CAS  PubMed  Google Scholar 

  82. Lindvall O, Björklund A. Cell therapy in Parkinson’s disease. NeuroRx. 2004;1(4):382–93.

    Article  PubMed  Google Scholar 

  83. Lu P, Tuszynski MH. Growth factors and combinatorial therapies for CNS regeneration. Exp Neurol. 2008;209: 313–20.

    Article  CAS  PubMed  Google Scholar 

  84. Luckenbill-Edds L. Laminin and the mechanism of neuronal outgrowth. Brain Res Rev. 1997;23:1–27.

    Article  CAS  PubMed  Google Scholar 

  85. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  86. Mahoney MJ, Anseth KS. Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials. 2006;27:2265–74.

    Article  CAS  PubMed  Google Scholar 

  87. Mahoney MJ, Chen RR, Tan J, et al. The influence of microchannels on neurite growth and architecture. Biomaterials. 2005;26:771–8.

    Article  CAS  PubMed  Google Scholar 

  88. Martino G, Pluchino S. The therapeutic potential of neural stem cells. Nat Rev Neurosci. 2006;7(5):395–406.

    Article  CAS  PubMed  Google Scholar 

  89. Massia SP, Hubbell JA. An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3- mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J Cell Biol. 1991;114(5):1089–100.

    Article  CAS  PubMed  Google Scholar 

  90. Mckay R, Kittappa R. Will stem cell biology generate new therapies for Parkinson’s disease? Neuron. 2008;58(5): 659–61.

    Article  CAS  PubMed  Google Scholar 

  91. Mendez I, Sanchez-Pernaute R, Cooper O, et al. Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain. 2005;128(7):1498–510.

    Article  PubMed  Google Scholar 

  92. Mendez I, Vinuela A, Astradsson A, et al. Dopamine neurons implanted into people with Parkinson’s disease survive without pathology for 14 years. Nat Med. 2008;14(5): 507–9.

    Article  CAS  PubMed  Google Scholar 

  93. Moore K, Macsween M, Shoichet MS. Immobilized concentration gradients of neurotrophic factors guide neurite outgrowth of primary neurons in macroporous scaffolds. Tissue Eng. 2006;12(2):267–78.

    Article  CAS  PubMed  Google Scholar 

  94. Myer DJ, Gurkoff GG, Lee SM, et al. Essential protective roles of reactive astrocytes in traumatic brain injury. Brain. 2006;129(10):2761–72.

    Article  CAS  PubMed  Google Scholar 

  95. Nadarajah B, Parnavelas JG. Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci. 2002;3(6):423–32.

    Article  CAS  PubMed  Google Scholar 

  96. Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell. 2002;110(4):429–41.

    Article  CAS  PubMed  Google Scholar 

  97. Ninkovic J, Götz M. Signaling in adult neurogenesis: from stem cell niche to neuronal networks. Curr Opin Neurobiol. 2007;17(3):338–44.

    Article  CAS  PubMed  Google Scholar 

  98. Nisbet DR, Crompton KE, Horne MK, et al. Neural tissue engineering of the CNS using hydrogels. J Biomed Mater Res B Appl Biomater. 2008;87B(1):251–63.

    Article  CAS  Google Scholar 

  99. Nisbet DR, Forsythe JS, Shen W, et al. Review paper: a review of the cellular response on electrospun nanofibers for tissue engineering. J Biomater Appl. 2008;24:7–29.

    Google Scholar 

  100. Nisbet DR, Pattanawong S, Ritchie NE, et al. Interaction of embryonic cortical neurons on nanofibrous scaffolds for neural tissue engineering. J Neural Eng. 2007;4:35–41.

    Article  CAS  PubMed  Google Scholar 

  101. Nisbet DR, Rodda AE, Horne MK, et al. Implantation of Functionalized Thermally Gelling Xyloglucan Hydrogel Within the Brain: Associated Neurite Infiltration and Inflammatory Response. Tissue Engineering Part A. 2010;16:2833–42.

    Article  CAS  PubMed  Google Scholar 

  102. Nisbet DR, Rodda AE, Horne MK, et al. Neurite infiltration and cellular response to electrospun polycaprolactone scaffolds implanted into the brain. Biomaterials. 2009; 30(27):4573–80.

    Article  CAS  PubMed  Google Scholar 

  103. Nisbet DR, Yu LMY, Zahir T, et al. Characterization of neural stem cells on electrospun poly(caprolactone) submicron scaffolds: evaluating their potential in neural tissue engineering. J Biomater Sci Polymer Ed. 2008;19:623–34.

    Article  CAS  Google Scholar 

  104. Okamoto T, Suzuki T, Yamamoto N. Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol. 2000;18:438–41.

    Article  CAS  PubMed  Google Scholar 

  105. Olanow CW, Goetz CG, Kordower JH, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol. 2003;54(3):403–14.

    Article  PubMed  Google Scholar 

  106. Olanow CW, Kordower JH, Freeman TB. Fetal nigral transplantation as a therapy for Parkinson’s disease. Trends Neurosci. 1996;19(3):102–9.

    Article  CAS  PubMed  Google Scholar 

  107. Palace J. Neuroprotection and repair. J Neurol Sci. 2008;265(1–2):21–5.

    Article  CAS  PubMed  Google Scholar 

  108. Parish CL, Arenas E. Stem-cell-based strategies for the treatment of Parkinson’s disease. Neurodegener Dis. 2007;4:339–47.

    Article  PubMed  Google Scholar 

  109. Park KI, Teng YD, Snyder EY. The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol. 2002;20(11):1111–7.

    Article  CAS  PubMed  Google Scholar 

  110. Pluchino S, Zanotti L, Brini E, et al. Regeneration and repair in multiple sclerosis: the role of cell transplantation. Neurosci Lett. 2009;456:101–6.

    Google Scholar 

  111. Pluchino S, Zanotti L, Deleidi M, et al. Neural stem cells and their use as therapeutic tool in neurological disorders. Brain Res Rev. 2005;48(2):211–9.

    Article  CAS  PubMed  Google Scholar 

  112. Powell SK, Kleinman HK. Neuronal laminins and their cellular receptors. Int J Biochem Cell Biol. 1997;29(3): 401–14.

    Article  CAS  PubMed  Google Scholar 

  113. Pratt AB, Weber FE, Schmoekel HG, et al. Synthetic extracellular matrices for in situ tissue engineering. Biotechnol Bioeng. 2004;86:27–36.

    Google Scholar 

  114. Rangappa N, Romero A, Nelson KD, et al. Laminin-coated poly(l-lactide) filaments induce robust neurite growth while providing directional orientation. J Biomed Mater Res. 2000;51:625–34.

    Article  CAS  PubMed  Google Scholar 

  115. Ratner BD. A paradigm shift: biomaterials that heal. Polym Int. 2007;56(10):1183–5.

    Article  CAS  Google Scholar 

  116. Ratner BD, Bryant SJ. Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng. 2004;6(1):41–75.

    Article  CAS  PubMed  Google Scholar 

  117. Recknor JB, Recknor JC, Sakaguchi DS, et al. Oriented astroglial cell growth on micropatterned polystyrene substrates. Biomaterials. 2004;25(14):2753–67.

    Article  CAS  PubMed  Google Scholar 

  118. Recknor JB, Sakaguchi DS, Mallapragada SK. Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates. Biomaterials. 2006;27(22):4098–108.

    Article  CAS  PubMed  Google Scholar 

  119. Ringeisen BR, Othon CM, Barron JA, et al. Jet-based methods to printing living cells. Biotechnol J. 2006;1:930–48.

    Article  CAS  PubMed  Google Scholar 

  120. Riquelme PA, Drapeau E, Doetsch F. Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Phil Trans R Soc B. 2008;363:123–37.

    Article  PubMed  Google Scholar 

  121. Roda A, Guardigli M, Russo C, et al. Protein microdeposition using a conventional ink-jet printer. BioTechniques. 2000;28(3):492–6.

    CAS  PubMed  Google Scholar 

  122. Roth EA, Xu T, Das M, et al. Inkjet printing for high-throughput cell patterning. Biomaterials. 2004;25:3707–15.

    Article  CAS  PubMed  Google Scholar 

  123. Ruiz A, Buzanska L, Ceriotti L, et al. Stem-cell culture on patterned bio-functional surfaces. J Biomater Sci Polym Ed. 2008;19(12):1649–57.

    Google Scholar 

  124. Ruiz A, Buzanska L, Gilliland D, et al. Micro-stamped surfaces for the patterned growth of neural stem cells. Biomaterials. 2008;29(36):4766–74.

    Article  CAS  PubMed  Google Scholar 

  125. Sanjana NE, Fuller SB. A fast flexible ink-jet printing method for patterning dissociated neurons in culture. J Neurosci Methods. 2004;136(2):151–63.

    Article  PubMed  Google Scholar 

  126. Santiago LY, Nowak RW, Peter RJ, et al. Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials. 2006;27(15):2962–9.

    Article  CAS  PubMed  Google Scholar 

  127. Saunders RE, Gough JE, Derby B. Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials. 2008;29:193–203.

    Article  CAS  PubMed  Google Scholar 

  128. Scadden DT. The stem-cell niche as an entity of action. Nature. 2006;441(7097):1075–9.

    Article  CAS  PubMed  Google Scholar 

  129. Schense JC, Bloch J, Aebischer P, et al. Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nat Biotechnol. 2000;18(4):415–9.

    Article  CAS  PubMed  Google Scholar 

  130. Schmidt RH, Björklund A, Stenevi U. Intracerebral grafting of dissociated CNS tissue suspensions: a new approach for neuronal transplantation to deep brain sites. Brain Res. 1981;218(1–2):347–56.

    Article  CAS  PubMed  Google Scholar 

  131. Schnell E, Klinkhammer K, Balzer S, et al. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-e-caprolactone blend. Biomaterials. 2007;28:3012–25.

    Article  CAS  PubMed  Google Scholar 

  132. Silva GA, Czeisler C, Niece K, et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science. 2004;303:1352–5.

    Article  CAS  PubMed  Google Scholar 

  133. Simonet M, Schneider OD, Neuenschwander P, et al. Ultraporous 3D polymer meshes by low-temperature electrospinning: Use of ice crystals as a removable void template. Polym Eng Sci. 2007;47(12):2020–6.

    Article  CAS  Google Scholar 

  134. Sofroniew MV. Reactive astrocytes in neural repair and protection. Neuroscientist. 2005;11(5):400–7.

    Article  CAS  PubMed  Google Scholar 

  135. Sofroniew MV, Howe CL, Mobley WC. Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci. 2001;24:1217–81.

    Article  CAS  PubMed  Google Scholar 

  136. Song H, Poo M-M. The cell biology of neuronal navigation. Nat Cell Biol. 2001;3:E81–8.

    Article  CAS  PubMed  Google Scholar 

  137. Sonntag K-C, Simantov R, Isacson O. Stem cells may reshape the prospect of Parkinson’s disease therapy. Mol Brain Res. 2005;134(1):34–51.

    Article  CAS  PubMed  Google Scholar 

  138. Stein DG, Hoffman SW. Concepts of CNS plasticity in the context of brain damage and repair. J Head Trauma Rehabil. 2003;18(4):317.

    Google Scholar 

  139. Stephens B, Mueller AJ, Shering AF, et al. Evidence of a breakdown of corticostriatal connections in Parkinson’s disease. Neuroscience. 2005;132(3):741–54.

    Google Scholar 

  140. Streit W, Mrak R, Griffin WS. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation. 2004;1(1):14.

    Google Scholar 

  141. Studer L, Tabar V, Mckay RDG. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat Neurosci. 1998;1(4):290–5.

    Article  CAS  PubMed  Google Scholar 

  142. Teo WE, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology. 2006;17:89–106.

    Article  CAS  Google Scholar 

  143. Tessier-Lavigne M, Placzek M. Target attraction – are developing axons guided by chemotropism? Trends Neurosci. 1991;14:303–10.

    Article  CAS  PubMed  Google Scholar 

  144. Thompson DM, Buettner HM. Schwann cell response to micropatterned laminin surfaces. Tissue Eng. 2001;7(3):247–65.

    Article  CAS  PubMed  Google Scholar 

  145. Tian WM, Hou SP, Ma J, et al. Hyaluronic acid-poly-D-lysine-based three-dimensional hydrogel for traumatic brain injury. Tissue Eng. 2005;11(3/4):513–25.

    Article  CAS  PubMed  Google Scholar 

  146. Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials. 1997;18(7):567–75.

    Article  CAS  PubMed  Google Scholar 

  147. Tong YW, Shoichet MS. Enhancing the neuronal interaction on fluoropolymer surfaces with mixed peptides or spacer group linkers. Biomaterials. 2001;22(10):1029–34.

    Article  CAS  PubMed  Google Scholar 

  148. Toulouse A, Sullivan AM. Progress in Parkinson’s disease–where do we stand? Prog Neurobiol. 2008;85(4):376–92.

    Google Scholar 

  149. Tysseling-Mattiace VM, Sahni V, Niece KL, et al. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci. 2008;28(14):3814–23.

    Article  CAS  PubMed  Google Scholar 

  150. Van Praag H, Schinder AF, Christie BR, et al. Functional neurogenesis in the adult hippocampus. Nature. 2002;415(6875):1030–4.

    Google Scholar 

  151. Vappou J, Breton E, Choquet P, et al. Assessment of in vivo and post-mortem mechanical behavior of brain tissue using magnetic resonance elastography. J Biomech. 2008;41(14): 2954–9.

    Article  PubMed  Google Scholar 

  152. West JL, Hubbell JA. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules. 1999;32(1):241–4.

    Article  CAS  Google Scholar 

  153. Willits RK, Skornia SL. Effect of collagen gel stiffness on neurite extension. J Biomater Sci Polym Ed. 2004;15(12):1521–31.

    Article  CAS  PubMed  Google Scholar 

  154. Winkler C, Kirik D, Björklund A. Cell transplantation in Parkinson’s disease: how can we make it work? Trends Neurosci. 2005;28(2):86–92.

    Article  CAS  PubMed  Google Scholar 

  155. Woerly S, Petrov P, Sykova E, et al. Neural tissue formation within porous hydrogels implanted in brain and spinal cord lesions: ultrastructural, immunohistochemical, and diffusion studies. Tissue Eng. 1999;5(5):467–88.

    Article  CAS  PubMed  Google Scholar 

  156. Xie J, Willerth SM, Li X, et al. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials. 2009;30(3):354–62.

    Article  CAS  PubMed  Google Scholar 

  157. Xu T, Gregory CA, Molnar P, et al. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials. 2006;27:3580–8.

    CAS  PubMed  Google Scholar 

  158. Xu T, Jin J, Gregory C, et al. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26:93–9.

    Article  PubMed  CAS  Google Scholar 

  159. Yang F, Murugan R, Ramakrishna S, et al. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials. 2004;25(10):1891–900.

    Article  CAS  PubMed  Google Scholar 

  160. Yang F, Murugan R, Wang S, et al. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26:2603–10.

    Article  CAS  PubMed  Google Scholar 

  161. Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci. 2006;7(8):617–27.

    Article  CAS  PubMed  Google Scholar 

  162. Yu LMY, Wosnick JH, Shoichet MS. Miniaturized system of neurotrophin patterning for guided regeneration. J Neurosci Methods. 2008;171:253–63.

    Article  CAS  PubMed  Google Scholar 

  163. Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol. 2003;21(10):1171–8.

    Article  CAS  PubMed  Google Scholar 

  164. Zhang Z, Yoo R, Wells M, et al. Neurite outgrowth on well-characterized surfaces: preparation and characterization of chemically and spatially controlled fibronectin and RGD substrates with good bioactivity. Biomaterials. 2005;26:47–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniece Fon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Fon, D., Nisbet, D.R., Thouas, G.A., Shen, W., Forsythe, J.S. (2011). Tissue Engineering of Organs: Brain Tissues. In: Pallua, N., Suscheck, C. (eds) Tissue Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02824-3_22

Download citation

Publish with us

Policies and ethics