Skip to main content

Defining Spatial Entropy from Multivariate Distributions of Co-occurrences

  • Conference paper
Spatial Information Theory (COSIT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5756))

Included in the following conference series:

Abstract

Finding geographical patterns by analysing the spatial configuration distribution of events, objects or their attributes has a long history in geography, ecology and epidemiology. Measuring the presence of patterns, clusters, or comparing the spatial organisation for different attributes, symbols within the same map or for different maps, is often the basis of analysis. Landscape ecology has provided a long list of interesting indicators, e.g. summaries of patch size distribution. Looking at content information, the Shannon entropy is also a measure of a distribution providing insight into the organisation of data, and has been widely used for example in economical geography. Unfortunately, using the Shannon entropy on the bare distribution of categories within the spatial domain does not describe the spatial organisation itself. Particularly in ecology and geography, some authors have proposed integrating some spatial aspects into the entropy: using adjacency properties or distances between and within categories. This paper goes further with adjacency, emphasising the use of co-occurences of categories at multiple orders, the adjacency being seen as a particular co-occurence of order 2 with a distance of collocation null, and proposes a spatial entropy measure framework. The approach allows multivariate data with covariates to be accounted for, and provides the flexibility to design a wide range of spatial interaction models between the attributes. Generating a multivariate multinomial distribution of collocations describing the spatial organisation, allows the interaction to be assessed via an entropy formula. This spatial entropy is dependent on the distance of collocation used, which can be seen as a scale factor in the spatial organisation to be analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shannon, C.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bogaert, J., Farina, A., Ceulemans, R.: Entropy increase of fragmented habitats: A sign of human impact? Ecological Indicators 5(3), 207–212 (2005)

    Article  Google Scholar 

  3. Batty, M.: Spatial entropy. Geographical Analysis 6, 1–31 (1974)

    Article  Google Scholar 

  4. Snickars, F., Weibull, J.: A minimum information principle: Theory and practice. Regional Science and Urban Economics 7, 137–168 (1977)

    Article  Google Scholar 

  5. Cutrini, E.: Using entropy measures to disentangle regional from national localization patterns. regional science and urban economics. Regional Science and Urban Economics 39(2), 243–250 (2009)

    Article  Google Scholar 

  6. Karlström, A., Ceccato, V.: A new information theoretical measure of global and local spatial association: S. The Review of Regional Research 22, 13–40 (2002)

    Google Scholar 

  7. O’Neill, R., Krummel, J., Gardner, R., Sugihara, G., Jackson, B., DeAngelis, D., Milne, B., Turner, M., Zygmunt, B., Christensen, S., Dale, V., Graham, R.: Indices of landscape pattern. Landscape Ecology 1(3), 153–162 (1988)

    Article  Google Scholar 

  8. Li, H., Reynolds, J.F.: A new contagion index to quantify spatial patterns of landscapes. Landscape Ecology 8, 155–162 (1993)

    Article  Google Scholar 

  9. Li, Z., Huang, P.: Quantitative measures for spatial information of maps. International Journal of Geographical Information Science 16(7), 699–709 (2002)

    Article  Google Scholar 

  10. Maitre, H., Bloch, I., Sigelle, M.: Spatial entropy: a tool for controlling contextual classification convergence. In: Proceedings of IEEE International Conference on Image Processing, ICIP 1994, vol. 2, pp. 212–216 (1994)

    Google Scholar 

  11. Tupin, F., Sigelle, M., Maitre, H.: Definition of a spatial entropy and its use for texture discrimination. In: International Conference on Image Processing, vol. 1, pp. 725–728 (2000)

    Google Scholar 

  12. Claramunt, C.: A spatial form of diversity. In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, pp. 218–231. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Li, X., Claramunt, C.: A spatial entropy-based decision tree for classification of geographical information. Transactions in GIS 10(3), 451–467 (2006)

    Article  Google Scholar 

  14. Leibovici, D., Bastin, L., Jackson, M.: Discovering spatially multiway collocations. In: GISRUK Conference 2008, Manchester, UK, April 2-4, 2008, pp. 66–71 (2008)

    Google Scholar 

  15. Diggle, P.J.: Statistical Analysis of Spatial Point Patterns. Hodder Arnold, London (2003)

    MATH  Google Scholar 

  16. Baddeley, A., Turner, R.: spatstat: An r package for analyzing spatial point patterns. Journal of Statistical Software 12(6) 1, 1–42 (2005)

    Google Scholar 

  17. Leibovici, D., Sabatier, R.: A Singular Value Decomposition of k-Way Array for a Principal Component Analysis of Multiway Data. PTA-k. Linear Algebra and Its Applications 269, 307–329 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leibovici, D.: PTAk: Principal Tensor Analysis on k modes. Contributing R-package version 1.1-16 (2007)

    Google Scholar 

  19. Bhati, A.S.: A generalized cross-entropy approach for modeling spatially correlated counts. Econometric Reviews 27(4), 574–595 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wuest, L.J., Nickerson, B., Mureika, R.: Information entropy of non-probabilistic processes. Geographical Analysis 35(3), 215–248 (2003)

    Article  Google Scholar 

  21. Shi, Y., Jin, F., Li, M.: A total entropy model of spatial data uncertainty. Journal of Information Science 32(4), 316–323 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leibovici, D.G. (2009). Defining Spatial Entropy from Multivariate Distributions of Co-occurrences. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds) Spatial Information Theory. COSIT 2009. Lecture Notes in Computer Science, vol 5756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03832-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03832-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03831-0

  • Online ISBN: 978-3-642-03832-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics