Skip to main content

Decentralized Time Geography for Ad-Hoc Collaborative Planning

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5756))

Abstract

For an autonomous physical agent, such as a moving robot or a person with their mobile device, performing a task in a spatio-temporal environment often requires interaction with other agents. In this paper we study ad-hoc collaborative planning between these autonomous peers. We introduce the notion of decentralized time geography, which differs from the traditional time-geographic framework by taking into account limited local knowledge. This allows agents to perform a space-time analysis within a time-geographic framework that represents local knowledge in a distributed environment as required for ad-hoc coordinated action between agents in physical space. More specifically, we investigate the impact of general agent movement, replacement seeking, and location and goal-directed behavior of the initiating agent on the outcome of the collaborative planning. Empirical tests in a multi-agent simulation framework provide both a proof of concept and specific results for different combinations of agent density and communication radius.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hägerstrand, T.: What about people in regional science? Papers of the Regional Science Association 24, 7–21 (1970)

    Article  Google Scholar 

  2. Miller, H.: A Measurement Theory for Time Geography. Geographical Analysis 37(1), 17–45 (2005)

    Article  Google Scholar 

  3. Lenntorp, B.: Paths in Space-Time Environments: A Time-Geographic Study of the Movement Possibilities of Individuals. Lund Studies in Geography, Series B (44) (1976)

    Google Scholar 

  4. Miller, H.: Measuring space-time accessibility benefits within transportation networks: Basic theory and computational methods. Geographical Analysis 31(2), 187–212 (1999)

    Article  Google Scholar 

  5. Kwan, M.-P.: GIS Methods in Time-Geographic Research: Geocomputation and Geovisualization of Human Activity Patterns. Geografiska Annaler B 86(4), 267–280 (2004)

    Article  Google Scholar 

  6. Miller, H.: Modeling accessibility using space-time prism concepts within geographical information systems. International Journal of Geographical Information Systems 5(3), 287–301 (1991)

    Article  Google Scholar 

  7. Raubal, M., Winter, S., Teßmann, S., Gaisbauer, C.: Time geography for ad-hoc shared-ride trip planning in mobile geosensor networks. ISPRS Journal of Photogrammetry and Remote Sensing 62(5), 366–381 (2007)

    Article  Google Scholar 

  8. Nittel, S., Duckham, M., Kulik, L.: Information dissemination in mobile ad-hoc geosensor networks. In: Egenhofer, M., Freksa, C., Miller, H. (eds.) Geographic Information Science - Third International Conference, GIScience, pp. 206–222. Springer, Berlin (2004)

    Google Scholar 

  9. Zhao, F., Guibas, L.: Wireless Sensor Networks. Elsevier, Amsterdam (2004)

    Google Scholar 

  10. Marti, S., Ganesan, P., Garcia-Molina, H.: SPROUT: P2P Routing with Social Networks. In: Lindner, W., et al. (eds.) Current Trends in Database Technology - EDBT, Workshops, pp. 425–435. Springer, Berlin (2004)

    Chapter  Google Scholar 

  11. Xu, B., Ouksel, A., Wolfson, O.: Opportunistic Resource Exchange in Inter-Vehicle Ad-Hoc Networks. In: Fifth IEEE International Conference on Mobile Data Management, pp. 4–12. IEEE, Berkeley (2004)

    Google Scholar 

  12. Schoder, D., Fischbach, K., Schmitt, C.: Core Concepts in Peer-to-Peer Networking. In: Subramanian, R., Goodman, B. (eds.) Peer-to-Peer Computing: The Evolution of a Disruptive Technology, pp. 1–27. Idea Group Inc., Hershey (2005)

    Chapter  Google Scholar 

  13. Jankowski, P., Robischon, S., Tuthill, D., Nyerges, T., Ramsey, K.: Design Considerations and Evaluation of a Collaborative, Spatio-Temporal Decision Support System. Transactions in GIS 10(3), 335–354 (2006)

    Article  Google Scholar 

  14. Luo, Y., Bölöni, L.: Children in the Forest: Towards a Canonical Problem of Spatio-Temporal Collaboration. In: AAMAS 2007, Int. Conference on Autonomous Agents and Multiagent Systems, pp. 990–997. IFAAMAS, Honolulu (2007)

    Google Scholar 

  15. Bowman, R., Hexmoor, H.: Agent Collaboration and Social Networks. In: International Conference on Integration of Knowledge Intensive Multi-Agent Systems KIMAS 2005: Modeling, EVOLUTION and Engineering, pp. 211–214. IEEE, Waltham (2005)

    Chapter  Google Scholar 

  16. Peng, J., Wu, M., Zhang, X., Xie, Y., Jiang, F., Liu, Y.: A Collaborative Multi-Agent Model with Knowledge-Based Communication for the RoboCupRescue Simulation. In: International Symposium on Collaborative Technologies and Systems (CTS 2006), pp. 341–348 (2006)

    Google Scholar 

  17. Duckham, M., Nittel, S., Worboys, M.: Monitoring Dynamic Spatial Fields Using Responsive Geosensor Networks. In: Shahabi, C., Boucelma, O. (eds.) ACM GIS 2005, pp. 51–60. ACM Press, New York (2005)

    Google Scholar 

  18. Farah, C., Zhong, C., Worboys, M., Nittel, S.: Detecting Topological Change Using a Wireless Sensor Network. In: Cova, T.J., Miller, H.J., Beard, K., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2008. LNCS, vol. 5266, pp. 55–69. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Laube, P., Duckham, M., Wolle, T.: Decentralized Movement Pattern Detection amongst Mobile Geosensor Nodes. In: Cova, T., et al. (eds.) GIScience 2008. LNCS, vol. 5266, pp. 199–216. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Ko, Y.-B., Vaidya, N.: Location-aided routing (LAR) in mobile ad hoc networks. In: Proceedings of the 4th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom 1998), pp. 66–75. ACM Press, Dallas (1998)

    Chapter  Google Scholar 

  21. Devore, J., Peck, R.: Statistics - The Exploration and Analysis of Data, 4th edn. Duxbury, Pacific Grove (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raubal, M., Winter, S., Dorr, C. (2009). Decentralized Time Geography for Ad-Hoc Collaborative Planning. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds) Spatial Information Theory. COSIT 2009. Lecture Notes in Computer Science, vol 5756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03832-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03832-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03831-0

  • Online ISBN: 978-3-642-03832-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics