Skip to main content

Chalcogens and Metal Chalcogenides

  • Chapter
  • First Online:
Electrochemistry of Metal Chalcogenides

Part of the book series: Monographs in Electrochemistry ((MOEC))

Abstract

It is common that the three heaviest elements of the sulfur sub-group, namely selenium, tellurium, and polonium, be collectively referred to as the “chalcogens,” and the term chalcogen be addressed only for these elements – in practice, only for the chemically and technologically important selenium and tellurium; however, according to the official guides to inorganic nomenclature, the term applies equally to all the elements in Group 16 of the Periodic Table, thus being proper also for oxygen and sulfur. On the other hand, several textbooks imply that oxygen is excluded from the chalcogens, this probably being the consequence of having discussed the chemistry of oxygen in a separate chapter [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It was discovered in 1873 that a small selenium bar in a telegraph circuit acts as a photoelectric resistor.

  2. 2.

     However, on account of the particularly short C―S distances, multiple bonds (probably of the d πp π type) between hypervalent sulfur and carbon occur in a number of species.

  3. 3.

     Actually, those containing M–M bonds.

  4. 4.

     The term “nanosized cluster” or “nanocluster” or simply “cluster” is used presently to denote a particle of any kind of matter, the size of which is greater than that of a typical molecule, but is too small to exhibit characteristic bulk properties. Such particles enter the size regime of mesoscopic materials.

  5. 5.

     The mechanism of these reactions is generally not considered, unlike the reactions lying in the realm of molecular chemistry, i.e., organic reactions, where kinetic control over intermediate and product species allows for recognizing details of the mechanism, that is, of the structure of functional groups present in a molecule. Note also that with organic reactions the true thermodynamic minimum for a particular combination of elements is usually irrelevant. (Stein A, Keller SW, Mallouk TE (1993) Turning down the heat: Design and mechanism in solid-state synthesis. Science 259: 1558–1564.)

  6. 6.

     As listed in MatWeb database: http://www.matweb.com/search/MaterialGroupSearch.aspx. Mineral names and corresponding exact or empirical formulas of the substances are given, as found.

  7. 7.

     Ibid., p. 29.

  8. 8.

     Ibid., p. 29.

  9. 9.

     Ibid., p. 29.

  10. 10.

     Ibid., p. 29.

  11. 11.

     Ibid., p. 29.

  12. 12.

     Analogous to the Curie temperature for ferromagnetic materials, the Néel temperature is the one at which an antiferromagnetic material becomes paramagnetic. At T N, the thermal energy becomes large enough to destroy the macroscopic magnetic ordering within the material.

  13. 13.

     The +2 state is here of little importance. Lower formal oxidation states are stabilized, however, by M–M bonding in ternary chalcogenides containing alkali metals such as A4M6Q12 or 13 (A = alkali metal; M = Re, Tc; Q = S, Se). The structures of such systems are all based on the face-capped, octahedral M6X8 cluster unit found in Chevrel phases and in the dihalides of Mo and W.

  14. 14.

     Ibid., p. 29.

  15. 15.

     Ibid., p. 29.

  16. 16.

     Ibid., p. 29.

  17. 17.

     Ibid., p. 29.

  18. 18.

     Ibid., p. 29.

  19. 19.

     Ibid., p. 29.

  20. 20.

     Ibid., p. 29.

  21. 21.

     Ibid., p. 29.

General References

  • Durrant PJ, Durrant B (1962) Introduction to advanced inorganic chemistry. Longmans, London

    Google Scholar 

  • Wells AF (1962) Structural inorganic chemistry. 3rd edn. Oxford University Press, London

    Google Scholar 

  • Schmidt M, Siebert W (1973) Sulphur. In: Trotman-Dickenson AF (ed.) Comprehensive Inorganic Chemistry (Vol 2), Pergamon Press, Oxford

    Google Scholar 

  • Bagnall KW (1973) Selenium, tellurium and polonium. In: Trotman-Dickenson AF (ed.) Comprehensive inorganic chemistry (Vol 2), Pergamon Press, Oxford

    Google Scholar 

  • Greenwood NN, Earnshaw A (1984) Chemistry of the elements. Pergamon Press, Oxford.

    Google Scholar 

  • Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry. 5th edn. John Wiley and Sons, New York

    Google Scholar 

  • Massey AG (1990) Main group chemistry. Ellis Horwood, Chichester

    Google Scholar 

  • Rasmussen RL, Morse JG, Morse KW (2004) Main Group elements. In: Meyers RA (ed.) Encyclopedia of Physical Science and Technology – Inorganic Chemistry. Elsevier Science, URL: <http://www.elsevier.com/inca/718245>

  • Demortier A, Lelieur J-P, Levillain E (2006) Sulfur. In Bard AJ, Stratmann M (eds.) Encyclopedia of electrochemistry, Vol. 7a: Inorganic chemistry, Sholz F, Pickett ChJ (eds.), Wiley-VCH, Weinheim, p 253

    Google Scholar 

  • 2007 Minerals Yearbook. http://minerals.usgs.gov/minerals/pubs/commodity/selenium

  • http://www.matweb.com/search/MaterialGroupSearch.aspx

References

  1. Jensen WB (1997) A note on the term “Chalcogen”. J Chem Educ 74: 1063–1064

    CAS  Google Scholar 

  2. Fischer W (2001) A second note on the term “Chalcogen”. J Chem Educ 78: 1333

    CAS  Google Scholar 

  3. Fthenakis V, Wang W, Kim HC (2009) Life cycle inventory analysis of the production of metals used in photovoltaics. Renewable Sustainable Energy Rev 13: 493–517

    CAS  Google Scholar 

  4. Waitkins GR, Bearse AE, Shutt R (1942) Industrial utilization of selenium and tellurium. Ind Eng Chem 34: 899–910

    CAS  Google Scholar 

  5. Fischer R (1972) Absorption and electroabsorption of trigonal selenium near the fundamental absorption edge. Phys Rev B 5: 3087–3094

    Google Scholar 

  6. Séby F, Potin-Gautier M, Giffaut E, Borge G, Donard OFX (2001) A critical review of thermodynamic data for selenium species at 25 °C. Chem Geol 171: 173–194

    Google Scholar 

  7. Ball S, Milne J (1995) Studies on the interaction of selenite and selenium with sulfur donors. Part 3. Sulfite. Can J Chem 73: 716–724

    CAS  Google Scholar 

  8. Sharp KW, Koehler WH (1977) Synthesis and characterization of sodium polyselenides in liquid ammonia solution. Inorg Chem 16: 2258–2265

    CAS  Google Scholar 

  9. Sheldrick WS (2007) Polychalcogenides. In Devillanova FA (ed.), Handbook of chalcogen chemistry: New perspectives in sulfur, selenium and tellurium, Royal society of Chemistry: Cambridge, UK

    Google Scholar 

  10. Schultz LD, Koehler WH (1987) Synthesis and characterization of sodium polytellurides in liquid ammonia solution. Inorg Chem 26: 1989–1993

    CAS  Google Scholar 

  11. Schultz LD (1990) Synthesis and characterization of potassium polytellurides in liquid ammonia solution. Inorg Chim Acta 176: 271–275

    CAS  Google Scholar 

  12. Björgvinsson M, Schrobilgen GJ (1991) Homo- and heteropolychalcogenide anions Ch2–, HCh, Ch2 2–, Ch3 2–, and Ch4 2– (Ch = Se and/or Te): Solution 1H, 77Se, 123Te, and 125Te NMR Study. Inorg Chem 30: 2540–2547

    Google Scholar 

  13. Smith DM, Ibers JA (2000) Syntheses and solid-state structural chemistry of polytelluride anions. Coord Chem Rev 200–202: 187–205

    Google Scholar 

  14. Kanatzidis MG, Huang SP (1994) Coordination chemistry of heavy polychalcogenide ligands. Coord Chem Rev 130: 509–621

    CAS  Google Scholar 

  15. Gillespie RJ, Passmore J (1971) Polycations of Group VI. Acc Chem Res 4: 413–419

    CAS  Google Scholar 

  16. Giggenbach WF (1974) Equilibria involving polysulfide ions in aqueous sulfide solutions up to 240 °C. Inorg Chem 13: 1724–1730

    CAS  Google Scholar 

  17. Licht S, Hodes G, Manassen J (1986) Numerical analysis of aqueous polysulfide solutions and its application to cadmium chalcogenide/polysulfide photoelectrochemical solar cells. Inorg Chem 25: 2486–2489

    CAS  Google Scholar 

  18. Dubois P, Lelieur JP, Lepoutre G (1988) Identification and characterization of lithium polysulfides in solution in liquid ammonia. Inorg Chem 27: 73–80

    CAS  Google Scholar 

  19. Licht S (1995) Electrolyte modified photoelectrochemical solar cells. Sol Energy Mater Sol Cells 38: 305–319

    CAS  Google Scholar 

  20. Vahrenkamp H (1975) Sulfur atoms as ligands in metal complexes. Angew Chem Int Ed Engl 14: 322–329

    Google Scholar 

  21. Draganjac M, Rauchfuss TB (1985) Transition metal polysulfides: Coordination compounds with purely inorganic chelate ligands. Angew Chem Int Ed Engl 24: 742–757

    Google Scholar 

  22. DuBois MR (1989) Catalytic applications of transition metal complexes. Chem Rev 89: l–9

    Google Scholar 

  23. Ansari MA, Ibers JA (1990) Soluble selenides and tellurides. Coord Chem Rev 100: 223–266

    CAS  Google Scholar 

  24. Roof LC, Kolis JW (1993) New developments in the coordination chemistry of inorganic selenide and telluride ligands. Chem Rev 93: 1037–1080

    CAS  Google Scholar 

  25. Kanatzidis MG (1995) From cyclo-Te8 to Ten– x sheets: Are nonclassical polytellurides more classical than we thought? Angew Chem Int Ed Engl 34: 2109–2111

    Google Scholar 

  26. Simon A (1981) Condensed metal clusters. Angew Chem Int Ed Engl 20: 1–21

    Google Scholar 

  27. Sokolov MN, Fedin VP, Sykes AG (2003) Chalcogenide-containing metal clusters. In: McCleverty JA, Meyer TJ (ed) The Comprehensive Coordination Chemistry II, 2nd edn., Vol 4. Elsevier Science, URL: <http://www.elsevier.com/inca/702343> pp. 761–823

  28. Socolov MN (2007) Metal Chalcogenides: Clusters, layers, nanotubes. In Devillanova FA (ed) Handbook of chalcogen chemistry: New perspectives in sulfur, selenium and tellurium, Royal Society of Chemistry: Cambridge, UK

    Google Scholar 

  29. Fedorov VE, Mironov YV, Naumov NG, Sokolov MN, Fedin VP (2007) Chalcogenide clusters of group 5–7 metals. Rus Chem Rev 76: 529–552

    CAS  Google Scholar 

  30. Kornienko A, Emge TJ, Kumar GA, Riman RE, Brennan JG (2005) Lanthanide clusters with internal Ln ions: Highly emissive molecules with solid-state cores. J Am Chem Soc 127: 3501–3505

    CAS  Google Scholar 

  31. Kornienko AY, Emge TJ, Brennan JG (2001) Chalcogen-rich lanthanide clusters: Cluster reactivity and the influence of ancillary ligands on structure. J Am Chem Soc 123: 11933–11939

    CAS  Google Scholar 

  32. Wang Y (1991) Nonlinear optical properties of nanometer-sized semiconductor clusters. Acc Chem Res 24: 133–139

    CAS  Google Scholar 

  33. Wang Y, Suna A, Mahler W, Kasowki R (1987) PbS in polymers. From molecules to bulk solids. J Chem Phys 87: 7315–7322

    CAS  Google Scholar 

  34. Hodes G (2007) When small is different: some recent advances in concepts and applications of nanoscale phenomena. Adv Mater 19: 639–655

    CAS  Google Scholar 

  35. Whittingham MS (1978) Chemistry of intercalation compounds. Prog Solid State Chem 12: 41–99

    CAS  Google Scholar 

  36. Jobic S, Brec R, Rouxel J (1992) Occurrence and characterization of anionic bondings in transition metal dichalcogenides. J Alloy Compd 178: 253–283

    CAS  Google Scholar 

  37. Wilson JA, Yoffe AD (1969) The transition metal dichalcogenides. Discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18(73): 193–335

    CAS  Google Scholar 

  38. Iglesias JE, Steinfink H (1973) Crystal chemistry of AB2X4 (X = S, Se, Te) compounds. J Solid State Chem 6: 119–125

    CAS  Google Scholar 

  39. Tretyakov YuD, Gordeev IV, Kesler YaA (1977) Investigation of some chalcogenides with spinel structure. J Solid State Chem 20: 345–358

    CAS  Google Scholar 

  40. Madelung O (1992) Semiconductors – Other than Group IV Elements and II-V Compounds. In: Poerscke R (ed) Data in Science and Technology, Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  41. Wei S-H, Zunger A (1987) Total-energy and band-structure calculations for the semimagnetic Cd1–xMnxTe semiconductor alloy and its binary constituents. Phys Rev B 35: 2340–2365

    CAS  Google Scholar 

  42. Bruce PG, Irvine JTS (2001) Insertion Compounds. In Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd : Oxford ISBN: 0-08-0431526, pp. 4115–4121

    Google Scholar 

  43. Schöllhorn R (1980) Reversible topotactic redox reactions of solids by electron/ion transfer. Angew Chem Int Ed Engl 19: 983–1003

    Google Scholar 

  44. Schöllhorn R (1984) Electron/ion-transfer reactions of solids with different lattice dimensionality. Pure Appl Chem 56: 1739–1752

    Google Scholar 

  45. Wiegers GA (1996) Misfit Layer Compounds: Structures and Physical Properties. Prog Solid State Chem 24: 1–139

    Google Scholar 

  46. Tanaka K (2001) Chalcogenide Glasses. In Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd: Oxford ISBN: 0-08-0431526, pp. 1123–1131

    Google Scholar 

  47. Ovshinsky SR (1968) Reversible Electrical Switching Phenomena in Disordered Structures. Phys Rev Lett 21: 1450–1453

    Google Scholar 

  48. Sarid D, McCarthy B, Jabbour GE (2004) Nanotechnology for data storage applications. In Bhushan B (ed) Springer Handbook of Nanotechnology – Part E. Springer-Verlag, pp. 899–920

    Google Scholar 

  49. Greer AL, Mathur N (2005) Changing face of the chameleon. Nature 437: 1246–1247

    CAS  Google Scholar 

  50. Kanatzidis MG, Poeppelmeier KR (Organizers) (2007) Report from the third workshop on future directions of solid-state chemistry: The status of solid-state chemistry and its impact in the physical sciences. Prog Solid State Chem 36: 1–133

    Google Scholar 

  51. Lu Q, Hu J, Tang K, Qian Y, Zhou G, Liu X (2000) Synthesis of nanocrystalline CuMS2 (M = In or Ga) through a solvothermal process. Inorg Chem 39: 1606–1607

    CAS  Google Scholar 

  52. Wu C, Yu S-H, Antoniette M (2006) Complex concaved cuboctahedrons of copper sulfide crystals with highly geometrical symmetry created by a solution process. Chem Mater 18: 3599–3601

    CAS  Google Scholar 

  53. Yamaguchi K, Yoshida T, Sugiura T, Minoura H (1998) A Novel approach for CdS thin-film deposition: electrochemically induced atom-by-atom growth of CdS thin films from acidic chemical bath. J Phys Chem B 102: 9677–9686

    CAS  Google Scholar 

  54. Yoshimura M, Suchanek W (1997) In situ fabrication of morphology-controlled advanced ceramic materials by Soft Solution Processing. Solid State Ionics 98: 197–208

    CAS  Google Scholar 

  55. Yu S-H, Yoshimura M (2002) Ferrite/metal composites fabricated by soft solution processing. Adv Funct Mater 12: 9–15

    CAS  Google Scholar 

  56. Kanatzidis MG, Pottgen R, Jeitschko W (2005) The metal flux: a preparative tool for the exploration of intermetallic compounds. Angew Chem Int Ed 44: 6996–7023

    CAS  Google Scholar 

  57. Trindade T, O’Brien P, Pickett NL (2001) Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chem Mater 13: 3843–3858

    CAS  Google Scholar 

  58. Stöwe K, Appel S (2002) Polymorphic forms of rubidium telluride Rb2Te. Angew Chem Int Ed 41: 2725–2730

    Google Scholar 

  59. Sheldrick WS, Wachhold M, Jobic S, Brec R, Canadell E (1997) New low-dimensional solids: tellurium-rich alkali metal tellurides. Adv Mater 9: 669–675

    CAS  Google Scholar 

  60. Zheng Zh, Greedan JE (2004) Rare earth elements and materials. In Meyers RA (ed) Encyclopedia of Physical Science and Technology – Inorganic Chemistry. Elsevier Science, URL: <http://www.elsevier.com/inca/718245>

  61. Chen L, Xia SQ, Corbett JD (2005) Metal-rich chalcogenides. Synthesis, structure, and bonding of the layered Lu11Te4. Comparison with the similar Sc8Te3 and Ti11Se4. Inorg Chem 44: 30573062

    Google Scholar 

  62. Babo JM, Schleid T (2008) Synthesis and crystal structure of the rubidium scandium telluride RbSc5Te8. Z Anorg Allg Chem 634: 1463–1465

    CAS  Google Scholar 

  63. Katsuyama S, Tanaka Y, Hashimoto H, Majima K, Nagai H (1997) Effect of substitution of La by alkaline earth metal on the thermoelectric properties and the phase stability of γ-La3S4. J Appl Phys 82: 5513–5519

    CAS  Google Scholar 

  64. Assoud A, Soheilnia N, Kleinke H (2007) Thermoelectric properties of the new tellurides SrSc2Te4and BaSc2Te4 in comparison to BaY2Te4. Intermetallics 15: 371–376

    CAS  Google Scholar 

  65. Wu P, Ibers JA (1995) Quaternary chalcogenides containing a rare earth and an alkali- or alkaline-earth metal. J Alloy Compd 229: 206–215

    CAS  Google Scholar 

  66. Narducci AA, Ibers JA (1998) Ternary and quaternary uranium and thorium chalcogenides. Chem Mater 10: 2811–2823

    CAS  Google Scholar 

  67. Hübener S (2004) Actinide Elements. In Meyers RA (ed) Encyclopedia of Physical Science and Technology – Inorganic Chemistry. Elsevier Science, URL: <http://www.elsevier.com/inca/718245>

  68. Lucovsky G, White RM, Benda JA, Revelli JF (1973) Infrared-reflectance spectra of layered Group-IV and Group-VI transition-metal dichalcogenides. Phys Rev B 7: 3859–3870

    CAS  Google Scholar 

  69. Cordes H, Schmid-Fetzer R (1994) Phase equilibria in the Ti-Te system. J Alloy Compd 216: 197–206

    Google Scholar 

  70. Harbrecht B, Conrad M, Degen T, Herbertz R (1997) Synthesis and crystal structure of Hf2Te. J Alloy Compd 255: 178–182

    CAS  Google Scholar 

  71. Hughbanks T (1995) Exploring the metal-rich chemistry of the early transition elements. J Alloy Compd 229: 40–53

    CAS  Google Scholar 

  72. Rouxel J (1992) Low-dimensional solids: An interface between molecular and solid-state chemistry? The example of chainlike niobium and tantalum chalcogenides. Acc Chem Res 25: 328–336

    CAS  Google Scholar 

  73. Harbrecht B (1989) Ta2Se: A tantalum-rich selenide with a new layer structure. Angew Chem Int Ed Eng 28: 1660–1662

    Google Scholar 

  74. Li J, Badding ME, DiSalvo FJ (1992) New layered ternary niobium tellurides: Synthesis, structure, and properties of NbMTe2 (M = Fe, Co). Inorg Chem 31: 1050–1054

    CAS  Google Scholar 

  75. Tremel W, Kleinke H, Derstroff V, Reisner C (1995) Transition metal chalcogenides: New views on an old topic. J Alloy Compd 219: 73–82

    CAS  Google Scholar 

  76. Young DJ, Smeltzer WW, Kirkaldy JS (1973) Nonstoichiometry and thermodynamics of chromium sulfides. J Electrochem Soc 120: 1221–1224

    CAS  Google Scholar 

  77. Li Q, Walter EC, van der Veer WE, Murray BJ, Newberg JT, Bohannan EW, Switzer JA, Hemminger JC, Penner RM (2005) Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis. J Phys Chem B 109: 3169–3182

    CAS  Google Scholar 

  78. Tenne R, Homyonfer M, Feldman Y (1998) Nanoparticles of layered compounds with hollow cage structures (inorganic fullerene-like structures). Chem Mater 10: 3225–3238

    CAS  Google Scholar 

  79. Shibahara T (1993) Syntheses of sulphur-bridged molybdenum and tungsten coordination compounds. Coord Chem Rev 123: 73–147

    CAS  Google Scholar 

  80. Chevrel R, Gougeon P, Potel M, Sergent M (1985) Ternary molybdenum chalcogenides: A route to new extended clusters. J Solid State Chem 57: 25–33

    CAS  Google Scholar 

  81. Harvey G, Matheson TW (1986) Hydroprocessing catalysis by supported ruthenium sulphide. J Catal 101: 253–261

    CAS  Google Scholar 

  82. Passaretti D, Chianelli RR, Wold A, Dwight K, Covino J (1986) Preparation and properties of the systems Co1–x Rh x S2, Co1–x Ru x S2, and Rh1–x Ru x S2. J Solid State Chem 64: 365–371

    CAS  Google Scholar 

  83. Riaz U, Curnow OJ, Curtis MD (1994) Desulfurization of organic sulfur compounds mediated by a molybdenum /cobalt /sulfur cluster. J Am Chem Soc 116: 4357–4363

    CAS  Google Scholar 

  84. Furdyna JK (1988) Dilute magnetic semiconductors. J Appl Phys 64: R29–64

    Google Scholar 

  85. Oestreich M, Hübner J, Hägele D, Klar PJ, Heimbrodt W, Rühle WW, Ashenford DE, Lunn B (1999) Spin injection into semiconductors. Appl Phys Lett 74: 1251–1253

    CAS  Google Scholar 

  86. Lamfers HJ, Meetsma A, Wiegers GA, Boer JL (1996) The crystal structure of some rhenium and technetium dichalcogenides. J Alloy Compd 241: 34–39

    CAS  Google Scholar 

  87. Schwarz DE, Frenkel AI, Nuzzo RG, Rauchfuss TB, Vairavamurthy A (2004) Electrosynthesis of ReS4. XAS analysis of ReS2, Re2S7, and ReS4. Chem Mater 16: 151–158

    CAS  Google Scholar 

  88. Dey S, Jain VK (2004) Platinum group metal chalcogenides. Their syntheses and applications in catalysis and materials science. Platinum Metals Rev 48: 16–29

    CAS  Google Scholar 

  89. Jiang X, Xie Y, Lu J, He W, Zhu L, Qian Y (2000) Preparation and phase transformation of nanocrystalline copper sulfides (Cu9S8, Cu7S4 and CuS) at low temperature. J Mater Chem 10: 2193–2196

    CAS  Google Scholar 

  90. Blachnik R, Lasocka M, Walbrecht U (1983) The system copper-tellurium. J Solid State Chem 48: 431–438

    CAS  Google Scholar 

  91. Jaffe JE, Zunger A (1984) Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors. Phys Rev B. 29: 1882–1906

    CAS  Google Scholar 

  92. Tell B, Shay JL, Kasper HM (1974) Some properties of AgAlTe2, AgGaTe2, and AgInTe2. Phys Rev B 9: 5203–5208

    CAS  Google Scholar 

  93. Ouammou A, Mouallem-Bahout M, Peña O, Halet JF, Saillard JY, Carel C (1995) Physical properties and electronic structure of ternary barium copper sulfides. J Solid State Chem 117: 73–79

    CAS  Google Scholar 

  94. Starodub VA (1999) Ternary and quaternary chalcogenides of Group IB elements. Rus Chem Rev 68: 801–820

    CAS  Google Scholar 

  95. Davies DA, Vecht A, Silver J, Marsh PJ, Rose JA (2000) A novel method for the preparation of inorganic sulfides and selenides I. Binary materials and Group II–VI phosphors. J Electrochem Soc 147: 765–771

    CAS  Google Scholar 

  96. Nicolau YF, Dupuy M, Brunel M (1990) ZnS, CdS, and Zn1-x Cd x S thin films deposited by the successive ionic layer adsorption and reaction process. J Electrochem Soc 137: 2915–2924

    CAS  Google Scholar 

  97. Loferski JL (1956) Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion. J Appl Phys 27: 777–784

    CAS  Google Scholar 

  98. Dybko K, Szuszkiewicz W, Dynowska E, Paszkowicz W, Witkowska B (1998) Band structure of β-HgS from Shubnikov–de Haas effect. Physica B 256–258: 629–632

    Google Scholar 

  99. Mathe MK, Cox SM, Venkatasamy V, Uwe Happek, Stickney JL (2005) Formation of HgSe thin films using electrochemical atomic layer epitaxy. J Electrochem Soc 152: C751–C755

    Google Scholar 

  100. Lombos BA, Lee EYM, Kipling AL, Krawczyniuk RW (1975) Mercury Chalcogenides, Zero gap semiconductors. J Phys Chem Solids 36: 1193–1198

    CAS  Google Scholar 

  101. Wei S-H, Zunger A (1988) Role of metal d-states in II–VI semiconductors. Phys Rev B 37: 8958–8986

    CAS  Google Scholar 

  102. Wei S-H, Zunger A (1986) Alloy-stabilized semiconducting and magnetic zinc-blende phase of MnTe. Phys Rev Lett 56: 2391–2394

    CAS  Google Scholar 

  103. Conrad O, Jansen C, Krebs B (1998) Boron – Sulfur and Boron – Selenium compounds – From unique molecular structural principles to novel polymeric materials. Angew Chem Int Ed 37: 3208–3218

    Google Scholar 

  104. Takaluoma T, Säkkinen T, Bajorek T, Laitinen RS, Krebs B, Conrad H, Conrad O (2007) Computational study of hybrid chalcogenoborate anions. J Mol Struct (THEOCHEM) 821: 1–8

    CAS  Google Scholar 

  105. Morley S, Emde von der M, Zahn DRT, Offermann V, Ng TL, Maung N, Wright AC, Fan GH, Poole IB, Williams JO (1996) Optical spectroscopy of epitaxial Ga2Se3 layers from the far infrared to the ultraviolet. J Appl Phys 79: 3196–3199

    CAS  Google Scholar 

  106. Lu CY, Adams JA, Yu Q, Ohta T, Olmstead MA, Ohuchi FS (2008) Heteroepitaxial growth of the intrinsic vacancy semiconductor Al2Se3 on Si(111): Initial structure and morphology. Phys Rev B 78: 075321–075326

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirtat Bouroushian .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bouroushian, M. (2010). Chalcogens and Metal Chalcogenides. In: Electrochemistry of Metal Chalcogenides. Monographs in Electrochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03967-6_1

Download citation

Publish with us

Policies and ethics