Skip to main content

An Introduction to the Dynamics of Trojan Asteroids

  • Chapter
  • First Online:
Dynamics of Small Solar System Bodies and Exoplanets

Part of the book series: Lecture Notes in Physics ((LNP,volume 790))

Abstract

The dynamics of Trojan asteroids constitutes one of the richest fields of celestial mechanics, as a real application of the three-body problem. It involves the L 4 and L 5 Lagrange points and the conditions of stability around these two points. In this chapter we propose to present the fundamentals of the dynamics of Trojan asteroids. After a brief historical overview, we come back to the definitions and characteristics of the collinear Lagrange points L 1, L 2, and L 3, as well as the triangular ones, L 4 and L 5. We show how observational data of Trojan asteroids have confirmed the existence of real bodies librating around these two last points. Then we focus on the linearization of the equations of motion around L 4 and L 5 from a general and purely theoretical point of view. In addition, we show how qualitative results can be extracted to describe the properties of Trojan asteroids. We complete our study by summarizing many previous and up-to-date investigations, which focus on their dynamical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, V.I.: Instability of dynamical systems with several degrees of freedom. Sov. Math. Dokl. 5, 581–585, (1964)

    Google Scholar 

  2. Arnold, V.I.: Ordinary Differential Equations. Springer-Verlag, New York (1992)

    Google Scholar 

  3. Arnold, V.I., Kozlov, V.V., Neistadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics. Encyclopaedia of Mathematical Sciences. Springer-Verlag, New York (2006)

    Google Scholar 

  4. Arnold, V.I.: Proof of A.N. Kolmogorov’s theorem on the preservation of quasiperiodic motions under small perturbations of the Hamiltonian. Russ. Math. Surv. 18(5), 9–36 (1963)

    Article  Google Scholar 

  5. Beaugé, C., Roig, F.: A semianalytical model for the motion of the Trojan asteroids: Proper elements and families. Icarus 153, 391–415 (2001)

    Article  ADS  Google Scholar 

  6. Benettin, G., Fasso, F., Guzzo, M.: Nekhoroshev-stability of l4 and l5 in the spatial restricted three-body problem. Regul. Chaotic Dyn. 3(3), 56–72 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bennett, T.L.: On the reduction of the problem of n bodies. Messenger Math. XXXIV, 113–120 (1905)

    Google Scholar 

  8. Brasser, R., Innanen, K.A., Connors, M., Veillet, C., Wiegert, P., Mikkola, S., Chodas, P.W.: Transient co-orbital asteroids. Icarus 171, 102–109 (September 2004)

    Article  ADS  Google Scholar 

  9. Brasser, R., Lehto, H.J.: The role of secular resonances on Trojans of the terrestrial planets. MNRAS 334, 241–247 (July 2002)

    Article  ADS  Google Scholar 

  10. Celletti, A., Giorgilli, A.: On the stability of the Lagrangian points in the spatial restricted problem of three bodies. Celest. Mech. Dyn. Astron. 50, 31–58 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Christou, A.A.: A numerical survey of transient co-orbitals of the terrestrial planets. Icarus 144, 1–20 (March 2000)

    Article  ADS  Google Scholar 

  12. Danby, J.M.A. Stability of the triangular points in the elliptic restricted problem of three bodies. Astron. Astrophys. 69, 165 (1964)

    MathSciNet  ADS  Google Scholar 

  13. de Elía, G.C., Brunini, A.: Collisional and dynamical evolution of the L4 Trojan asteroids. Astron. Astrophys. 475, 375–389 (November 2007)

    Article  MATH  ADS  Google Scholar 

  14. de La Barre, C.M., Kaula, W.M., Varadi, F.: A study of orbits near Saturn’s triangular Lagrangian points. Icarus 121, 88–113 (May 1996)

    Article  ADS  Google Scholar 

  15. Deprit, A.: Elimination of the nodes in problems of N bodies. Celest. Mech. Dyn. Astron. 30, 181–195, (June 1983)

    MATH  MathSciNet  Google Scholar 

  16. Deprit, A., Deprit-Bartholome, A. Stability of the triangular Lagrangian points. Astron. J. 72, 173–179, (March 1967)

    Article  ADS  Google Scholar 

  17. Dvorak, R., Lhotka, Ch., Schwartz, R.: The dynamics of inclined Neptune Trojans. Celest. Mech. Dyn. Astron. 102(1–3), 97–110 (2008)

    Google Scholar 

  18. Dvorak R., Schwarz, R.: On the stability regions of the Trojan asteroids. Celest. Mech. Dyn. Astron. 92, 19–28 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Efthymiopoulos, C., Sándor, Z.: Optimized Nekhoroshev stability estimates for the Trojan asteroids with a symplectic mapping model of co-orbital motion. MNRAS 364, 253–271 (November 2005)

    Article  ADS  Google Scholar 

  20. Érdi, B.: The Trojan problem. Celest. Mech. Dyn. Astron. 65, 149–167 (1997)

    Article  MATH  Google Scholar 

  21. Evans, N.W., Tabachnik, S.A.: Asteroids in the inner solar system—II. Observable properties. MNRAS 319, 80–94 (November 2000)

    Article  ADS  Google Scholar 

  22. Gabern, F.: On the dynamics of the Trojan asteroids. PhD thesis, Departament de Matemàtica Aplicada i Anàlisi Universitat de Barcelona (2003)

    Google Scholar 

  23. Gabern, F., Jorba, À.: Generalizing the restricted three-body problem. The Bianular and Tricircular coherent problems. Astron. Astrophys. 420, 751–762 (June 2004)

    MATH  Google Scholar 

  24. Gabern, F., Jorba, A., Locatelli, U.: On the construction of the Kolmogorov normal form for the Trojan asteroids. Nonlinearity 18, 1705–1734 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Gabern, F., Jorba, A., Robutel, P.: On the accuracy of restricted three-body models for the Trojan motion. Discrete Contin. Dyn. Syst. 11(4), 843–854 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gascheau, G.: Examen d’une classe d’équations différentielles et application à un cas particulier du problème des trois corps. Compt. Rend. 16(7), 393–394 (1843)

    Google Scholar 

  27. Giorgilli, A., Delshams, A., Fontich, E., Galgani, L., Simó, C.: Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem. J. Diff. Eqns. 77(1), 167–198 (1989)

    Article  MATH  Google Scholar 

  28. Giorgilli, A., Skokos, C.: On the stability of the Trojan asteroids. Astron. Astrophys. 317, 254–261 (January 1997)

    ADS  Google Scholar 

  29. Gomes, R.S., Levison, H.F., Tsiganis, K., Morbidelli, A.: Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (May 2005)

    Article  ADS  Google Scholar 

  30. Holman, M.J., Wisdom, J.: Dynamical stability in the outer solar system and the delivery of short period comets. Astron. J. 105, 1987–1999 (May 1993)

    Article  ADS  Google Scholar 

  31. Innanen, K.A., Mikkola, S.: Studies on solar system dynamics. I—The stability of Saturnian Trojans. Astron. J. 97, 900–908 (March 1989)

    Article  ADS  Google Scholar 

  32. Kortenkamp, S.J., Malhotra, R., Michtchenko, T.: Survival of Trojan-type companions of Neptune during primordial planet migration. Icarus 167, 347–359 (February 2004)

    Article  ADS  Google Scholar 

  33. Lagerkvist, C.-I., Karlsson, O., Hahn, G., Mottola, S., Doppler, A., Gnädig, A., Carsenty, U.: The Uppsala-DLR Trojan Survey of L 4, the preceding Lagrangian cloud of Jupiter. Astronomische Nachrichten 323, 475–483 (July 2002)

    Article  ADS  Google Scholar 

  34. Leontovitch, A.M.: On the stability of the Lagrange’s periodic solutions of the restricted three body problem. Dolk. Akad. Nouk USSR 43, 525–528 (1962)

    Google Scholar 

  35. Levison, H.F., Shoemaker, E.M., Shoemaker, C.S.: The long-term dynamical stability of Jupiter’s Trojan asteroids. Nature 385, 42–44 (1997)

    Article  ADS  Google Scholar 

  36. Lhotka, C., Efthymiopoulos, C., Dvorak, R.: Nekhoroshev stability at L4 or L5 in the elliptic-restricted three-body problem—Application to Trojan asteroids. MNRAS 384, 1165–1177 (March 2008)

    Article  ADS  Google Scholar 

  37. Lissauer, J.J., Chambers, J.E.: Solar and planetary destabilization of the Earth Moon triangular Lagrangian points. Icarus 195, 16–27 (May 2008)

    Article  ADS  Google Scholar 

  38. Malige, F., Robutel, P., Laskar, J.: Partial reduction in the n-body planetary problem using the angular momentum integral. Celest. Mech. Dyn. Astron. 84(3), 283–316 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Markeev, A.P.: Stability of the triangular Lagrangian solutions of the restricted three-body problem in the three-dimensional circular case. Sov. Astron. 15, 682–668 (February 1972)

    Google Scholar 

  40. Marzari, F., Scholl, H.: The role of secular resonances in the history of Trojans. Icarus 146, 232–239 (July 2000)

    Article  ADS  Google Scholar 

  41. Marzari, F., Tricarico, P., Scholl, H.: The MATROS project: Stability of Uranus and Neptune Trojans. The case of 2001 qr322. Astron. Astrophys. 410, 725–734 (2003)

    ADS  Google Scholar 

  42. Meyer, K.R., Hall, G.R.: Introduction to Hamiltonian Dynamical Systems and the n-Body Problem. Springer-Verlag, New York (1992)

    Google Scholar 

  43. Meyer, K.R., Schmidt, D.S.: The stability of the Lagrange triangular point and a theorem of Arnold. J. Diff. Eqns. 62(2), 222–236 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  44. Meyer, K.R., Schmidt, D.S.: Elliptic relative equilibria in the n-body problem. J. Diff. Eqns. 214, 256–298 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  45. Michtchenko, T., Beaugé, C., Roig, F.: Planetary migration and the effects of mean motion resonances on Jupiter’s Trojan asteroids. Astron. J. 122, 3485–3491 (2001)

    Article  ADS  Google Scholar 

  46. Mikkola, S., Innanen, K.: A numerical exploration of the evolution of Trojan type asteroidal orbits. Astron. J. 104, 1641–1649 (October 1992)

    Article  ADS  Google Scholar 

  47. Milani, A.: The Trojan asteroid belt: Proper elements, stability, chaos and families. Celest. Mech. Dyn. Astron. 57, 59–94 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  48. Milani, A.: The dynamics of the Trojan asteroids. In IAU Symp. 160: Asteroids, Comets, Meteors 1993, vol. 160, pp. 159–174 (1994)

    ADS  Google Scholar 

  49. Milani, A., Knevzevi, Z.: Secular perturbation theory and computation of asteroid proper elements. Celest. Mech. Dyn. Astron. 49, 347–411 (1990)

    Article  MATH  ADS  Google Scholar 

  50. Morais, M.H.M., Morbidelli, A.: The population of near-earth asteroids in coorbital motion with the earth. Icarus 160, 1–9 (November 2002)

    Article  ADS  Google Scholar 

  51. Morais, M.H.M., Morbidelli, A.: The population of near earth asteroids in coorbital motion with Venus. Icarus 185(1), 29–38 (November 2006)

    Article  ADS  Google Scholar 

  52. Morbidelli, A.: Modern Celestial Mechanics: Aspects of Solar System Dynamics. Taylor & Francis, London, ISBN 0415279399 (2002)

    Google Scholar 

  53. Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R.S.: Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (May 2005)

    Article  ADS  Google Scholar 

  54. Nekhoroshev, N.N.: An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. Russ. Math. Surv. 32(6), 1–65 (1977)

    Article  MATH  Google Scholar 

  55. Nesvorny, D., Dones, L.: How long-live are the hypothetical Trojan populations of Saturn, Uranus, and Neptune? Icarus 160, 271–288 (2002)

    Article  ADS  Google Scholar 

  56. Perko, L.: Differential Equations and Dynamical Systems. Texts in Applied Mathematics. Springer-Verlag, New York (1991)

    Google Scholar 

  57. Roberts, G.: Linear stability of the elliptic Lagrangian triangle solutions in the three-body problem. J. Diff. Eqns. 182, 191–218 (2002)

    Article  MATH  Google Scholar 

  58. Robutel, P.: Stability of the planetary three-body problem II: Kam theory and existence of quasiperiodic motions. Celest. Mech. Dyn. Astron. 62, 219–261 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  59. Robutel, P., Gabern, F.: The resonant structure of Jupiter&s Trojan asteroids I: Long-term stability and diffusion. MNRAS 372, 1463–1482 (2006)

    Article  ADS  Google Scholar 

  60. Robutel, P., Gabern, F., Jorba, A.: The observed Trojans and the global dynamics around the Lagrangian points of the Sun–Jupiter system. Celest. Mech. Dyn. Astron. 92, 53–69 (April 2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  61. Roig, F., Ribeiro, A.O., Gil-Hutton, R.: Taxonomy of asteroid families among the Jupiter Trojans: comparison between spectroscopic data and the Sloan Digital Sky Survey colors. Astron. Astrophys. 483, 911–931 (June 2008)

    Article  ADS  Google Scholar 

  62. Scholl, H., Marzari, F., Tricarico, P.: Dynamics of Mars Trojans. Icarus 175, 397–408 (June 2005)

    Article  ADS  Google Scholar 

  63. Scholl, H., Marzari, F., Tricarico, P.: The instability of Venus Trojans. Astron. J. 130,2912–2915 (December 2005)

    Article  ADS  Google Scholar 

  64. Schubart, J., Bien, R.: On the computation of characteristic orbital elements for the Trojan group of asteroids. In Asteroids, Comets, Meteors II, pp. 153–156 (1986)

    ADS  Google Scholar 

  65. Skokos, C., Dokoumetzidis, A.: Effective stability of the Trojan asteroids. Astron. Astrophys. 367, 729–736 (February 2001)

    Article  ADS  Google Scholar 

  66. Szebehely, V.G.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New-York (1967)

    Google Scholar 

  67. Tsiganis, K., Gomes, R.S., Morbidelli, A., Levison, H.F.: Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (May 2005)

    Article  ADS  Google Scholar 

  68. van Houten, C.J., van Houten-Groeneveld, A., Gehrels, T.: Minor planets and related objects. V. The density of Trojans near the preceding Lagrangian point. Astron. J. 75, 659–662 (June 1970)

    Article  ADS  Google Scholar 

  69. Williams, J.G.: Secular Perturbations in the Solar System. PhD thesis, AA, University of California, Los Angeles (1969)

    Google Scholar 

Download references

Acknowledgments

We are deeply grateful to Daniel Suchet and Rachelle Holman for having carefully reviewed the chapter. We are indebted to Alain Albouy for very interesting discussions concerning the historical aspect

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Robutel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robutel, P., Souchay, J. (2010). An Introduction to the Dynamics of Trojan Asteroids. In: Souchay, J., Dvorak, R. (eds) Dynamics of Small Solar System Bodies and Exoplanets. Lecture Notes in Physics, vol 790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04458-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04458-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04457-1

  • Online ISBN: 978-3-642-04458-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics