Skip to main content

Weak Chemical Interaction and van der Waals Forces: A Combined Density Functional and Intermolecular Perturbation Theory – Application to Graphite and Graphitic Systems

  • Chapter
  • First Online:
Advances in the Atomic-Scale Modeling of Nanosystems and Nanostructured Materials

Part of the book series: Lecture Notes in Physics ((LNP,volume 795))

Abstract

In this contribution we address the theoretical underst anding of weak chemical interactions and of the van der Waals forces, in conjunction with the last developments in this area and selected applications to nanostructures. In the first section, we highlight the importance of these interactions, in physics and chemistry and also in biology, and we recall early treatments of these issues, as those by van der Waals and London. After a brief review of the existing methods to treat such interactions, we present a model based on DFT (for each van der Waals-interacting independent system) and an intermolecular perturbation theory that uses a localized orbitals basis set. We will first detail a weak overlap expansion (LCAO-S 2) as a perturbation treatment to determine the weak chemical interaction. Then we will show how to implement the van der Waals interaction in the DFT solution, from the dipolar approximation in a perturbation theory. We apply this model to a reference system for weak interactions, i.e., the interaction between two planes of graphene. In the framework of a minimal basis set that describes each independent system and the weak chemical repulsion, we show that it is necessary to take into account atomic dipole transitions involving high excited states like 3d orbitals to properly describe the van der Waals interaction. We demonstrate how the delicate balance between chemical repulsion and van der Waals attractive interaction gives the equilibrium geometry and the binding energy of the system. Moreover, as an extension of this work, we obtain the adsorption energy of a carbon nanotube on graphene, the adsorption energy of a C60 molecule on a carbon nanotube, and the energy of a C60 molecule encapsulated in a carbon nanotube. This gives us the opportunity to discuss incommensurable systems. A complete study of C60 dimers is also presented with future perspective for the study of C60 molecular crystals. We will conclude with an overview of this work, discussing interaction and transport at metal–organics interfaces from the point of view of applications in the field of molecular electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. London, Z. Phys. Chem. Abt. B 11, 222 (1930).

    CAS  Google Scholar 

  2. F. London, Z. Phys. 63, 245 (1930).

    CAS  ADS  Google Scholar 

  3. H. Rydberg, M. Dion, N. Jacobson, E. Schröder, P. Hyldgaard, S. I. Simak, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 91, 126402 (2003).

    CAS  PubMed  ADS  Google Scholar 

  4. A. N. Kolmogorov and V. H. Crespi, Phys. Rev. B 71, 235415 (2005).

    ADS  Google Scholar 

  5. L. Henrard, E. Hernández, P. Bernier, and A. Rubio, Phys. Rev. B 60, R8521 (1999).

    CAS  ADS  Google Scholar 

  6. F. Tournus, J.-C. Charlier, and P. Mélinon, J. Chem. Phys. 122, 094315 (2005).

    PubMed  ADS  Google Scholar 

  7. F. Tournus and J.-C. Charlier, Phys. Rev. B 71, 165421 (2005).

    ADS  Google Scholar 

  8. Q. Wu and W. Yang, J. Chem. Phys. 116, 515 (2002).

    CAS  ADS  Google Scholar 

  9. S. Arellano, L. M. Molina, A. Rubio, M. J. López, and J. A. Alonso, J. Chem. Phys. 117, 2281 (2002).

    CAS  ADS  Google Scholar 

  10. M. J. Allen and D. J. Tozer, J. Chem. Phys. 117, 11113 (2002).

    CAS  ADS  Google Scholar 

  11. K. T. Tang and J. P. Toennies, J. Chem. Phys. 118, 4976 (2003).

    CAS  ADS  Google Scholar 

  12. R. N. Barnett and U. L andman, Phys. Rev. B 48, 2081 (1993).

    CAS  ADS  Google Scholar 

  13. J. Ortega, J. P. Lewis, and O. F. Sankey, Phys. Rev. B 50, 10516 (1994).

    CAS  ADS  Google Scholar 

  14. N. Kurita, H. Inoue, and H. Sekino, Chem. Phys. Lett. 370, 161 (2003).

    CAS  ADS  Google Scholar 

  15. S. Grimme, J. Antony, T. Schwabe, and Ch. Mück-Lichtenfeld, Org. Biomol. Chem. 5, 741 (2007).

    CAS  PubMed  Google Scholar 

  16. J. F. Dobson, J. Wang, B. P. Dinte, K. McLennan, and H. M. Le, Int. J. Quantum Chem. 101, 579 (2005).

    CAS  Google Scholar 

  17. M. A. Basanta, PhD Thesis, Autonomus University of Madrid (2005).

    Google Scholar 

  18. A. L. Fetter and J. D. Walecka, Quantum Theory of Many Particle-Systems (McGraw-Hill, Inc., New York, 1971).

    Google Scholar 

  19. L. A. Girifalco and R. A. Lad, J. Phys. Chem. 25, 693 (1956).

    CAS  Google Scholar 

  20. V. I. Zubov, N. P. Tretiakov, J. N. Teixeira Rabelo, and J. F. Sanchez Ortiz, Phys. Lett. A 194, 223 (1994).

    CAS  ADS  Google Scholar 

  21. R. S. Ruoff and A. P. Hickman, J. Phys. Chem. 97, 2494 (1993).

    CAS  Google Scholar 

  22. J. Song and R. L. Cappelletti, Phys. Rev. B 50, 14678 (1994).

    CAS  ADS  Google Scholar 

  23. L. A. Girifalco, M. Hodak, and R. S. Lee, Phys. Rev. B 62, 13104 (2000).

    CAS  ADS  Google Scholar 

  24. A. J. Stone, The Theory of Intermolecular Forces (Oxford University Press, Oxford, 2000 reprint).

    Google Scholar 

  25. A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (Dover Publications, New York, 1989), p. 446.

    Google Scholar 

  26. C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics, vols. I and II, (John Wiley and Sons, New York, 1977), p. 1525.

    Google Scholar 

  27. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College Publishing, Philadelphia, 1976), p. 826.

    Google Scholar 

  28. M. V. Basilevsky and M. M. Berenfeld, Int. J. Quantum Chem. 6, 23 (1972).

    Google Scholar 

  29. V. Kvasnicka, V. Laurinc, and I. Hubac, Phys. Rev. A 10, 2016 (1974).

    ADS  Google Scholar 

  30. I. C. Hayes and A. J. Stone, Mol. Phys. 53, 83 (1984).

    CAS  ADS  Google Scholar 

  31. P. R. Surjan, C. Pérez del Valle, and L. Lain, Int. J. Quantum Chem. 64, 43 (1997).

    CAS  Google Scholar 

  32. V. Lukes, V. Laurinc, and S. Biskupic, Int. J. Quantum Chem. 75, 81 (1999).

    CAS  Google Scholar 

  33. B. Jeziorski and W. Kolos, Int. J. Quantum Chem. 12, Suppl. 1, 91 (1977).

    Google Scholar 

  34. S. Rybak, B. Jeziorski, and K. Szalewicz, J. Chem. Phys. 95, 6576 (1991).

    CAS  ADS  Google Scholar 

  35. K. Patkowski, B. Jeziorski, and K. Szalewicz, J. Chem. Phys. 120, 6849 (2004).

    CAS  PubMed  ADS  Google Scholar 

  36. C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).

    MATH  ADS  Google Scholar 

  37. D. Cremer, Møller-Plesset Perturbation Theory in Encyclopedia of Computational Chemistry, vol. 3, ed. P. von Rague-Schleyer (John Wiley, New York, 1998), p. 1706.

    Google Scholar 

  38. E. Engel, A. Höck, and R. M. Dreizler, Phys. Rev. A 61, 032502 (2000).

    ADS  Google Scholar 

  39. A. J. Misquitta and K. Szalewicz, Chem. Phys. Lett. 357, 301 (2002).

    CAS  ADS  Google Scholar 

  40. A. J. Misquitta, B. Jeziorski, and K. Szalewicz, Phys. Rev. Lett. 91, 033201 (2003).

    PubMed  ADS  Google Scholar 

  41. A. Hesselmann and G. Jansen, Chem. Phys. Lett. 367, 778 (2003).

    CAS  ADS  Google Scholar 

  42. I. C. Gerber and J. G. Ángyán, Chem. Phys. Lett. 416, 370 (2005).

    CAS  ADS  Google Scholar 

  43. J. G. Ángyán, I. C. Gerber, A. Savin, and J. Toulouse, Phys. Rev. A 72, 012510 (2005).

    ADS  Google Scholar 

  44. J. Misquitta, R. Podeszwa, B. Jeziorski, and K. Szalewicz, J. Chem. Phys. 123, 214103 (2005).

    PubMed  ADS  Google Scholar 

  45. A. Pople, M. Head-Gordon, and K. Raghavachari, J. Chem. Phys. 87, 5968 (1987).

    CAS  ADS  Google Scholar 

  46. P. Hohenberg and W. Kohn, Phys. Rev. 136, B 864 (1964).

    MathSciNet  ADS  Google Scholar 

  47. W. Kohn and L. J. Sham, Phys. Rev. 140, A 1133 (1965).

    MathSciNet  ADS  Google Scholar 

  48. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

    CAS  ADS  Google Scholar 

  49. T. Mikaye, F. Aryasetiawan, T. Kotani, M. van Schilfgaarde, M. Usuda, and K. Terakura, Phys. Rev. B 66, 245103 (2002).

    ADS  Google Scholar 

  50. J. F. Dobson and J. W. Wang, Phys. Rev. B 69, 235104 (2004).

    ADS  Google Scholar 

  51. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    CAS  ADS  Google Scholar 

  52. P. Lewis, K. R. Glaesmann, G. A. Voth, J. Fritsch, A. A. Demkov, J. Ortega, and O. F. Sankey, Phys. Rev. B 64, 195103 (2001).

    ADS  Google Scholar 

  53. Y. J. Dappe, M. A. Basanta, J. Ortega, and F. Flores, Phys. Rev. B 74, 205434 (2006).

    ADS  Google Scholar 

  54. S. Grimme, J. Comput. Chem. 25, 1463 (2004).

    CAS  PubMed  Google Scholar 

  55. S. grimme, J. Comput. Chem. 27, 1787 (2006).

    CAS  PubMed  Google Scholar 

  56. X. Wu, M. C. Vargas, S. Nayak, V. Lotrich, and G. Scoles, J. Chem. Phys. 115, 8748 (2001).

    CAS  ADS  Google Scholar 

  57. M. Elstner, P. Hobza, Th. Frauenheim, S. Suhai, and E. Kaxiras, J. Chem. Phys. 114, 5149 (2001).

    CAS  ADS  Google Scholar 

  58. M. Hasegawa and K. Nishidate, Phys. Rev. B 70, 205431 (2004).

    ADS  Google Scholar 

  59. U. Zimmerli, M. Parrinello, and P. Koumoutsakos, J. Chem. Phys. 120, 2693 (2004).

    CAS  PubMed  ADS  Google Scholar 

  60. D. C. Langreth, M. Dion, H. Rydberg, E. Schröder, P. Hyldgaard, and B. I. Lundqvist, Int. J. Quantum Chem. 101, 599 (2005).

    CAS  Google Scholar 

  61. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).

    CAS  PubMed  ADS  Google Scholar 

  62. W. Kohn, Y. Meir, and D. E. Makarov, Phys. Rev. Lett. 80, 4153 (1998).

    CAS  ADS  Google Scholar 

  63. J. F. Dobson and J. Wang, Phys. Rev. Lett. 82, 2123 (1999).

    CAS  ADS  Google Scholar 

  64. P. García-González and R. W. Godby Phys. Rev. Lett. 88, 056406 (2002).

    PubMed  ADS  Google Scholar 

  65. J. A. Alonso and A. Mañanes, Theor. Chem. Acc. 117, 467 (2007).

    CAS  Google Scholar 

  66. J. Toulouse, F. Colonna, and A. Savin, Phys. Rev. A 70, 0622505 (2004).

    Google Scholar 

  67. P. Gori-Giorgi and A. Savin. Phys. Rev. A 71, 032513 (2005).

    ADS  Google Scholar 

  68. M. Kamiya, T. Tsuneda, and K. Hirao, J. Chem. Phys. 117, 6010 (2002).

    CAS  ADS  Google Scholar 

  69. T. Leininger, H. Stoll, H. J. Werner, A. Savin, Chem. Phys. Lett. 275, 151 (1997).

    CAS  ADS  Google Scholar 

  70. Y. Andersson, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 76, 102 (1996).

    CAS  PubMed  ADS  Google Scholar 

  71. F. J. García-Vidal, J. Merino, R. Pérez, R. Rincón, J. Ortega, and F. Flores, Phys. Rev. B 50, 10537 (1994).

    ADS  Google Scholar 

  72. P. Pou, R. Pérez, F. Flores, A. Levy Yeyati, A. Martin-Rodero, J. M. Blanco, F. J. García-Vidal, and J. Ortega, Phys. Rev. B 62, 4309 (2000).

    CAS  ADS  Google Scholar 

  73. Y. J. Dappe, R. Oszwaldowski, P. Pou, J. Ortega, R. Pérez, and F. Flores, Phys. Rev. B 73, 235124 (2006).

    ADS  Google Scholar 

  74. M. A. Basanta, Y. J. Dappe, J. Ortega, and F. Flores, Europhys. Lett. 70, 355 (2005).

    CAS  ADS  Google Scholar 

  75. K. Schönhammer, O. Gunnarsson, and R. M. Noack, Phys. Rev. B 52, 2504 (1995).

    ADS  Google Scholar 

  76. O. F. Sankey and D. J. Niklewski, Phys. Rev. B 40, 3979 (1989).

    ADS  Google Scholar 

  77. A. A. Demkov, J. Ortega, O. F. Sankey, and M. P. Grumbach, Phys. Rev. B 52, 1618 (1995).

    CAS  ADS  Google Scholar 

  78. J. P. Lewis, K. R. Glaesemann, G. A. Voth, J. Fritsch, A. A. Demkov, J. Ortega, and O. F. Sankey, Phys. Rev. B 64, 195103 (2001).

    ADS  Google Scholar 

  79. P. Jelinek, H. Wang, J. P. Lewis, O. F. Sankey, and J. Ortega, Phys. Rev. B 71, 235101 (2005).

    ADS  Google Scholar 

  80. O. F. Sankey and D. J. Niklewski, Phys. Rev. B 40, 3979 (1989).

    ADS  Google Scholar 

  81. M. A. Basanta, Y. J. Dappe, P. Jelinek, and J. Ortega, Comput. Mater. Sci. 39, 759 (2007).

    CAS  Google Scholar 

  82. N. Troullier and J. L. Martin, Solid States Commun. 74, 613 (1990).

    ADS  Google Scholar 

  83. N. Troullier and J. L. Martin, Phys. Rev. B 43, 1993 (1991).

    CAS  ADS  Google Scholar 

  84. E. C. Goldberg, A. Martín-Rodero, R. Monreal, and F. Flores, Phys. Rev. B 39, 5684 (1989).

    CAS  ADS  Google Scholar 

  85. F. J. García-Vidal, A. Martín-Rodero, F. Flores, J. Ortega, and R. Pérez, Phys. Rev. B 44, 11412 (1991).

    ADS  Google Scholar 

  86. J. Ortega, J. P. Lewis, and O. F. Sankey, Phys. Rev. B 50, 10516 (1994).

    CAS  ADS  Google Scholar 

  87. J. Ortega, J. P. Lewis, and O. F. Sankey, J. Chem. Phys. 106, 3696 (1997).

    CAS  ADS  Google Scholar 

  88. J. N. Israelashvili, Intermolecular and Surface Forces, 2nd ed. (Academic, New York, 1992).

    Google Scholar 

  89. F. García-Moliner and F. Flores, Introduction to the Theory of Solid Surfaces (Cambridge University Press, Cambridge, 1979).

    Google Scholar 

  90. L. X. Benedict, N. G. Chopra, M. L. Cohen, A. Zettl, S. G. Louie, and V. H. Crespi, Chem. Phys. Lett. 286, 490 (1998).

    CAS  ADS  Google Scholar 

  91. R. Zacharia, H. Ulbricht, and T. Hertel, Phys. Rev. B 69, 155406 (2004).

    ADS  Google Scholar 

  92. S. D. Chakarova-Kack, E. Schröder, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. Lett. 96, 146107 (2006).

    PubMed  ADS  Google Scholar 

  93. J. F. Dobson, A. White, and A. Rubio, Phys. Rev. Lett. 96, 073201 (2006).

    PubMed  ADS  Google Scholar 

  94. Y. J. Dappe, J. Ortega, and F. Flores, Phys. Rev. B 79, 165409 (2009).

    ADS  Google Scholar 

  95. G. C. La Rocca, Europhys. Lett. 25, 5 (1994).

    ADS  Google Scholar 

  96. P. Launois, Research Habilitation (Paris-Sud University, Orsay, 1999).

    Google Scholar 

  97. P. A. Heiney, J. E. Fischer, A. R. McGhie, W. J. Romanow, A. M. Denenstein, J. P. McCauley, Jr., A. B. Smith, III, and D. E. Cox, Phys. Rev. Lett. 66, 2911 (1991).

    CAS  PubMed  ADS  Google Scholar 

  98. W. I. F. David, R. M. Ibberson, J. C. Matthewman, K. Prassides, T. J. S. Dennis, J. P. Hare, H. W. Kroto, R. Taylor, and D. R. M. Walton, Nature 353, 147 (1991).

    CAS  ADS  Google Scholar 

  99. E. Abad, J. Ortega, Y. J. Dappe, and F. Flores, Appl. Phys. A 95, 119 (2009).

    CAS  ADS  Google Scholar 

  100. T. Pankewitz and W. Klopper, J. Phys. Chem. C 111, 18917 (2007).

    CAS  Google Scholar 

  101. J. Lu, S. Nagase, S. Zhang, and L. Peng, Phys. Rev. B 68, 121402 (2003).

    ADS  Google Scholar 

  102. M. Yudasaka, K. Ajima, K. Suenaga, T. Ichihashi, A. Hashimoto, and S. Iijima, Chem. Phys. Lett. 380, 42 (2003).

    CAS  ADS  Google Scholar 

  103. A. Gloter, K. Suenaga, H. Kataura, R. Fujii, T. Kodama, H. Nishikawa, I. Ikemoto, K. Kikuchi, S. Suzuki, Y. Achiba, and S. Iijima, Chem. Phys. Lett. 390, 462 (2004).

    CAS  ADS  Google Scholar 

  104. M. M. Calbi, S. M. Gatica, and M. W. Cole, Phys. Rev. B 67, 205417 (2003).

    ADS  Google Scholar 

  105. H. Ulbricht, G. Moos, and T. Hertel, Phys. Rev. Lett. 90, 095501 (2003).

    PubMed  ADS  Google Scholar 

  106. L. A. Girifalco and M. Hodak, Phys. Rev. B 65, 125404 (2002).

    ADS  Google Scholar 

  107. S. Okada, Phys. Rev. B 77, 235419 (2008).

    MathSciNet  ADS  Google Scholar 

  108. B. Toudic, P. Garcia, Ch. Odin, Ph. Rabiller, C. Ecolivet, E. Collet, Ph. Bourges, G. J. McIntyre, M. D. Hollingsworth, and T. Breczewski, Science 319, 69 (2008).

    CAS  PubMed  ADS  Google Scholar 

  109. S. Boukari, A. Ghaddar, Y. Henry, J. Arabski, V. Da Costa, M. Bowen, J. Le Moigne, and E. Beaurepaire, Phys. Rev. B 76, 033302 (2007).

    ADS  Google Scholar 

  110. S. Kera, M. Casu, K. Bauschpies, D. Batchelor, T. Schmidt, and E. Umbach, Surf. Sci. 600, 1077 (2006).

    CAS  ADS  Google Scholar 

  111. A. R. Rocha, V. Garcia-Suarez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito, Nat. Mater. 4, 335 (2005).

    CAS  PubMed  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y.J. Dappe , J. Ortega or F. Flores .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dappe, Y., Ortega, J., Flores, F. (2010). Weak Chemical Interaction and van der Waals Forces: A Combined Density Functional and Intermolecular Perturbation Theory – Application to Graphite and Graphitic Systems. In: Massobrio, C., Bulou, H., Goyhenex, C. (eds) Advances in the Atomic-Scale Modeling of Nanosystems and Nanostructured Materials. Lecture Notes in Physics, vol 795. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04650-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04650-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04649-0

  • Online ISBN: 978-3-642-04650-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics