Skip to main content

High-Speed Photonic Integrated Chip on a Silicon Platform

  • Chapter
  • First Online:
Silicon Photonics II

Part of the book series: Topics in Applied Physics ((TAP,volume 119))

Abstract

As microprocessor technology advances toward multi-core and many-core architectures, optical interconnect is considered a promising way of meeting the associated demand for giga-scale and tera-scale input/output (I/O). While traditional optical communication systems demonstrate good performance, they are based on discrete components and are not suitable for computing applications, which require solutions with much lower cost and smaller size. Photonic integration, particularly when based on a silicon platform, has emerged as a key approach to realize the required low cost and small form factor optical transceivers. This chapter highlights a recent demonstration of a silicon photonic integrated chip that is capable of transmitting data at an aggregate rate of 200 Gb/s. It is based on wavelength division multiplexing where an array of eight high-speed silicon optical modulators is monolithically integrated with a demultiplexer and a multiplexer. This demonstration represents a key milestone on the way to fabricating terabit per second transceiver chips to meet the demand of future tera-scale I/O.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Held, J. Bautista, S. Koehl, From a few cores to many: a tera-scale computing research overview (2006), [Online]. Available at: http://download.intel.com/research/platform/terascale/terascale_overview_paper.pdf

  2. B. Casper, J. Jaussi, F. O’Mahony, M. Mansuri, K. Canagasaby, J. Kennedy, E. Yeung, R. Mooney, A 20 Gb/s Forwarded Clock Transceiver in 90 nm CMOS, Technical Digest of 2006 IEEE International Solid-State Circuits Conference, Session 4/Gigabit Transceivers/4.6,2006

    Google Scholar 

  3. G. Balamurugan, J. Kennedy, G. Banerjee, J.E. Jaussi, M. Mansuri, F.O’Mahony, B. Casper, R. Mooney, A Scalable 5–15 Gbps, 14–75 mW low power I/O transceiver in 65 nm CMOS, 2007 Symposium on VLSI Circuits Digest of Technical Papers, 270–271,2007

    Google Scholar 

  4. G.T. Reed, A.P. Knights, Silicon Photonics: An Introduction (Wiley, Chichester,2004)

    Google Scholar 

  5. L. Pavesi, D.J. Lockwood (eds.), Silicon Photonics (Springer-Verlag, Berlin,2004)

    Google Scholar 

  6. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, M. Paniccia, High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 15, 660–668(2007)

    Article  ADS  Google Scholar 

  7. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, 40 Gbit/s silicon optical modulator for high-speed applications. Electron. Lett. 43 (22), 1196–1197(2007)

    Article  Google Scholar 

  8. W.M. Green, M.J. Rooks, L. Sekaric, Y. Vlasov, Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt. Express 15, 17106–17113(2007)

    Article  ADS  Google Scholar 

  9. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, 12.5Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt. Express 15, 430–436(2007)

    Article  ADS  Google Scholar 

  10. S.J. Koester, G. Dehlinger, J.D. Schaub, J.O. Chu, Q.C. Ouyang, A. Grill, Germanium-on-insulator photodetectors, in Technical Digest of 2005 2nd IEEE International Conference on Group IV Photonics, pp.171–173

    Google Scholar 

  11. M. Oehme, J. Werner, E. Kasper, M. Jutzi, M. Berroth, High bandwidth Ge p-i-n photodetector integrated on Si. Appl. Phys. Lett. 89, 071117–071117-3(2006)

    Article  ADS  Google Scholar 

  12. O. Boyraz, B. Jalali, Demonstration of a silicon Raman laser. Opt. Express 12, 5269–5273(2004)

    Article  ADS  Google Scholar 

  13. H. Rong etal., A continuous-wave Raman silicon laser. Nature 433, 725–728(2005)

    Article  ADS  Google Scholar 

  14. A. Liu, H. Rong, M. Paniccia, O. Cohen, D. Hak, Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt. Express 12, 4261–4268(2004)

    Article  ADS  Google Scholar 

  15. O. Boyraz, B. Jalali, Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier. Electron. Express 1, 429–434(2004)

    Article  Google Scholar 

  16. Q. Xu, V.R. Almeida, M. Lipson, Demonstration of high Raman gain in a submicrometer-size silicon-on-insulator waveguide. Opt. Lett. 30, 35–37(2005)

    Article  ADS  Google Scholar 

  17. R. Jones etal. Net continuous-wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt. Express 13, 519–525(2005)

    Article  ADS  Google Scholar 

  18. R.L. Espinola, J.I. Dadap, R.M. Osgood, Jr., S.J. McNab, Y.A. Vlasov, C-band wavelength conversion in silicon photonic wire waveguides. Opt. Express 13, 4341–4349(2005)

    Article  ADS  Google Scholar 

  19. K. Yamada, etal., All-optical efficient wavelength conversion using silicon photonic wire waveguide. IEEE Photon. Technol. Lett. 18, 1046–1048(2006)

    Article  ADS  Google Scholar 

  20. H. Rong, Y.H. Kuo, A. Liu, M. Paniccia, O. Cohen, High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides. Opt. Express 14, 1182–1188(2006)

    Article  ADS  Google Scholar 

  21. A.W. Fang, H. Park, O. Cohen, R. Jones, M. Paniccia, J.E. Bowers, Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express 14, 9203–9210(2006)

    Article  ADS  Google Scholar 

  22. G.P. Agrawal, Fiber-Optic Communication Systems (Wiley, New York,1997)

    Google Scholar 

  23. R.A. Soref, P.J. Lorenzo, All-silicon active and passive guided-wave components for λ and 1.6 μm. IEEE J. Quantum Electron. QE-22, 873–879(1986)

    Article  ADS  Google Scholar 

  24. R.A. Soref, B.R. Bennett, Electrooptical effects in silicon. IEEE J. Quantum Electron. QE-23, 123–129(1987)

    Article  ADS  Google Scholar 

  25. R.C. Alferness, Waveguide electrooptic modulators. IEEE Trans. Microwave Theory Techn. 30, 1121–1137(1982)

    Article  ADS  Google Scholar 

  26. R.G. Walker, High-speed III-V semiconductor intensity modulators. IEEE J. Quantum Electron. 27, 654–667(1991)

    Article  ADS  Google Scholar 

  27. For details, see http://www.ansoft.com.

  28. A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, Y. Ohmori, Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides. IEEE Photon. Technol. Lett. 12, 1180–1182(2000)

    Article  ADS  Google Scholar 

  29. J. Brouckaert, W. Bogaert, P. Dumon, D. Van Thourhout, R. Baets, Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform. IEEE J. Lightwave Technol. 24, 1269–1275(2007)

    Article  ADS  Google Scholar 

  30. M. Oguma, T. Kitoh, T. Shibata, Y. Inoue, K. Jinguji, A. Himeno, Y. Hibino, Four-channel flat top low-loss filter for wide passband WDM access network. Electron. Lett. 37, 514–515(2001)

    Article  Google Scholar 

  31. For details, see http://www.photond.com.

  32. K.K. Lee, D.R. Lim, L.C. Kimerling, Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction. Opt. Lett. 26, 1888–1890(2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Fiel Concepcion for sample preparation, D. Li for data collection software, R. Gabay, A. Ugnitz, and G. Nutrica for device fabrication assistance, L. Kulig for material analysis, and T. Mader, S. Q. Shang, G. Sarid, D. D. Lu, H. Braunisch, G. T. Reed, and J. E. Bowers for useful discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liao, L. et al. (2011). High-Speed Photonic Integrated Chip on a Silicon Platform. In: Lockwood, D., Pavesi, L. (eds) Silicon Photonics II. Topics in Applied Physics, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10506-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10506-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10505-0

  • Online ISBN: 978-3-642-10506-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics