Skip to main content

Knowledge-Based Variable-Fidelity Optimization of Expensive Objective Functions through Space Mapping

  • Chapter
Computational Intelligence in Expensive Optimization Problems

Part of the book series: Adaptation Learning and Optimization ((ALO,volume 2))

Abstract

The growing complexity of engineering modeling and design problems demands effective strategies for optimization of computationally expensive objective functions. To this end, we focus on knowledge-based, variable-fidelity optimization of expensive functions through a tried and tested, yet still rapidly evolving art called space mapping optimization. Fitting into the arena of surrogatebased optimization, space-mapping optimization is a model-driven optimization process where the model is an iteratively updated surrogate derived from a valid, low-fidelity or physics-based coarse model. Space mapping takes several forms. Here, we present and formulate the original input space mapping concept, as well as the more recent implicit and output space mapping concepts. Corresponding surrogate models are presented, classified, and discussed. A proposed optimization flow is explained. Then we illustrate both input space mapping and implicit space mapping through the space mapping optimization of a simple, technology-free wedgecutting problem. We also present tuning space mapping, a powerful methodology, but one that requires extra engineering knowledge of the problem under investigation. To confirm our work, we select representative examples from the fields of microwave and antenna engineering, including filter and antenna designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agilent ADS 2008: Agilent Technologies, Santa Rosa, CA, USA (2008)

    Google Scholar 

  2. Alexandrov, N.M., Dennis, J.E., Lewis, R.M., Torczon, V.: A trust region framework for managing the use of approximation models in optimization. Structural Optimization 15, 16–23 (1998)

    Article  Google Scholar 

  3. Alexandrov, N.M., Lewis, R.M.: An overview of first-order model management for engineering optimization. Optimization Eng. 2, 413–430 (2001)

    Article  MATH  Google Scholar 

  4. Amari, S., LeDrew, C., Menzel, W.: Space-mapping optimization of planar coupled-resonator microwave filters. IEEE Trans. Microwave Theory Tech. 54, 2153–2159 (2006)

    Article  Google Scholar 

  5. Bakr, M.H., Bandler, J.W., Biernacki, R.M., Chen, S.H., Madsen, K.: A trust region aggressive space mapping algorithm for EM optimization. IEEE Trans. Microwave Theory Tech. 46, 2412–2425 (1998)

    Article  Google Scholar 

  6. Bakr, M.H., Bandler, J.W., Ismail, M.A., Rayas-Sánchez, J.E., Zhang, Q.J.: Neural space-mapping optimization for EM-based design. IEEE Trans. Microwave Theory Tech. 48, 2307–2315 (2000)

    Article  Google Scholar 

  7. Bandler, J.W., Liu, P.C., Tromp, H.: A nonlinear programming approach to optimal design centering, tolerancing and tuning. IEEE Trans. Circuits and Systems 23, 155–165 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bandler, J.W., Salama, A.E.: Functional approach to microwave postproduction tuning. IEEE Trans. Microwave Theory Tech. 33, 302–310 (1985)

    Article  Google Scholar 

  9. Bandler, J.W., Biernacki, R.M., Chen, S.H., Grobelny, P.A., Hemmers, R.H.: Space mapping technique for electromagnetic optimization. IEEE Trans. Microwave Theory Tech. 42, 536–544 (1994)

    Google Scholar 

  10. Bandler, J.W., Biernacki, R.M., Chen, S.H., Hemmers, R.H., Madsen, K.: Electromagnetic optimization exploiting aggressive space mapping. IEEE Trans. Microwave Theory Tech. 43, 2874–2882 (1995)

    Article  Google Scholar 

  11. Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Søndergaard, J.: Space mapping: the state of the art. IEEE Trans. Microwave Theory Tech. 52, 337–361 (2004)

    Article  Google Scholar 

  12. Bandler, J.W., Cheng, Q.S., Nikolova, N.K., Ismail, M.A.: Implicit space mapping optimization exploiting preassigned parameters. IEEE Trans. Microwave Theory Tech. 52, 378–385 (2004)

    Article  Google Scholar 

  13. Bandler, J.W., Koziel, S., Madsen, K.: Space mapping for engineering optimization. SIAG/Optimization Views-and-News Special Issue on Surrogate/Derivative-free Optimization 17, 19–26 (2006)

    Google Scholar 

  14. Booker, A.J., Dennis, J.E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W.: A rigorous framework for optimization of expensive functions by surrogates. Structural Optimization 17, 1–13 (1999)

    Article  Google Scholar 

  15. Buhmann, M.D., Ablowitz, M.J.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  16. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. MPS-SIAM Series on Optimization (2000)

    Google Scholar 

  17. Crevecoeur, G., Dupre, L., Van de Walle, R.: Space mapping optimization of the magnetic circuit of electrical machines including local material degradation. IEEE Trans. Magn. 43, 2609–2611 (2007)

    Article  Google Scholar 

  18. Dennis, J.E., Torczon, V.: Managing approximation models in optimization. In: Alexandrov, N.M., Hussaini, M.Y. (eds.) Multidisciplinary Design Optimization: State of the Art, pp. 330–347. SIAM, Philadelphia (1997)

    Google Scholar 

  19. Ding, X., Devabhaktuni, V.K., Chattaraj, B., Yagoub, M.C.E., Doe, M., Xu, J.J., Zhang, Q.J.: Neural network approaches to electromagnetic based modeling of passive components and their applications to high-frequency and high-speed nonlinear circuit optimization. IEEE Trans. Microwave Theory Tech. 52, 436–449 (2004)

    Article  Google Scholar 

  20. Dorica, M., Giannacopoulos, D.D.: Response surface space mapping for electromagnetic optimization. IEEE Trans. Magn. 42, 1123–1126 (2006)

    Article  Google Scholar 

  21. Echeverria, D., Hemker, P.W.: Space mapping and defect correction. CMAM The International Mathematical Journal Computational Methods in Applied Mathematics 5, 107–136 (2005)

    MATH  MathSciNet  Google Scholar 

  22. Encica, L., Makarovic, J., Lomonova, E.A., Vandenput, A.J.A.: Space mapping optimization of a cylindrical voice coil actuator. IEEE Trans. Industry Applications 42, 1437–1444 (2006)

    Article  Google Scholar 

  23. FEKO User’s Manual, Suite 5.4, EM Software and Systems-S.A (Pty) Ltd., Stellenbosch, South Africa (2008)

    Google Scholar 

  24. Gano, S.E., Renaud, J.E., Sanders, B.: Variable fidelity optimization using a kriging based scaling function. In: Proc. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conf., Albany, New York, USA (2004)

    Google Scholar 

  25. Ismail, M.A., Smith, D., Panariello, A., Wang, Y., Yu, M.: EM-based design of large-scale dielectric-resonator filters and multiplexers by space mapping. IEEE Trans. Microwave Theory Tech. 52, 386–392 (2004)

    Article  Google Scholar 

  26. Kokotoff, D.M., Aberle, J.T., Waterhouse, R.B.: Rigorous analysis of probe-fed printed annular ring antennas. IEEE Trans. Antennas and Propagation 47, 384–388 (1999)

    Article  Google Scholar 

  27. Koziel, S., Bandler, J.W., Mohamed, A.S., Madsen, K.: Enhanced surrogate models for statistical design exploiting space mapping technology. In: IEEE MTT-S Int. Microwave Symp. Dig., Long Beach, CA, pp. 1609–1612 (2005)

    Google Scholar 

  28. Koziel, S., Bandler, J.W., Madsen, K.: Space-mapping based interpolation for engineering optimization. IEEE Trans. Microwave Theory Tech. 54, 2410–2421 (2006)

    Article  Google Scholar 

  29. Koziel, S., Bandler, J.W., Madsen, K.: A space mapping framework for engineering optimization: theory and implementation. IEEE Trans. Microwave Theory Tech. 54, 3721–3730 (2006)

    Article  Google Scholar 

  30. Koziel, S., Bandler, J.W.: Space-mapping optimization with adaptive surrogate model. IEEE Trans. Microwave Theory Tech. 55, 541–547 (2007)

    Article  Google Scholar 

  31. Koziel, S., Bandler, J.W., Madsen, K.: Quality assessment of coarse models and surrogates for space mapping optimization. Optimization Eng. 9, 375–391 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Koziel, S., Cheng, Q.S., Bandler, J.W.: Space mapping. IEEE Microwave Magazine 9(6), 105–122 (2008)

    Article  Google Scholar 

  33. Leary, S.J., Bhaskar, A., Keane, A.J.: A constraint mapping approach to the structural optimization of an expensive model using surrogates. Optimization Eng. 2, 385–398 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  34. Liao, C.K., Chi, P.L., Chang, C.Y.: Microstrip realization of generalized Chebyshev filters with box-like coupling schemes. IEEE Trans. Microwave Theory Tech. 55, 147–153 (2007)

    Article  Google Scholar 

  35. Manchec, A., Quendo, C., Favennec, J.F., Rius, E., Person, C.: Synthesis of capacitive-coupled dual-behavior resonator (CCDBR) filters. IEEE Trans. Microwave Theory Tech. 54, 2346–2355 (2006)

    Article  Google Scholar 

  36. Marsden, A.L., Wang, M., Dennis, J.E., Moin, P.: Optimal aeroacoustic shape design using the surrogate management framework. Optimization Eng. 5, 235–262 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  37. Matlab, ver. 7.14, The MathWorks, Inc., Natick, MA, USA (2008)

    Google Scholar 

  38. Miraftab, V., Mansour, R.R.: A robust fuzzy-logic technique for computer-aided diagnosis of microwave filters. IEEE Trans. Microwave Theory Tech. 52, 450–456 (2004)

    Article  Google Scholar 

  39. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidynathan, R., Tucker, P.K.: Surrogate-based analysis and optimization. Progress in Aerospace Sciences 41, 1–28 (2005)

    Article  Google Scholar 

  40. Rautio, J.C.: RF design closure—companion modeling and tuning methods. In: IEEE MTT IMS Workshop: Microwave component design using space mapping technology, San Francisco, CA (2006)

    Google Scholar 

  41. Rayas-Sánchez, J.E.: EM-based optimization of microwave circuits using artificial neural networks: the state of the art. IEEE Trans. Microwave Theory Tech. 52, 420–435 (2004)

    Article  Google Scholar 

  42. Rayas-Sánchez, J.E., Lara-Rojo, F., Martínez-Guerrero, E.: A linear inverse space mapping (LISM) algorithm to design linear and nonlinear RF and microwave circuits. IEEE Trans. Microwave Theory Tech. 53, 960–968 (2005)

    Article  Google Scholar 

  43. Redhe, M., Nilsson, L.: Using space mapping and surrogate models to optimize vehicle crashworthiness design. In: 9th AIAA/ISSMO Multidisciplinary Analysis and Optimization Symp., Atlanta, GA, Paper AIAA-2002-5536 (2002)

    Google Scholar 

  44. Robinson, T.D., Eldred, M.S., Willcox, K.E., Haimes, R.: Surrogate-based optimization using multifidelity models with variable parameterization and corrected space mapping. AIAA Journal 46, 2814–2822 (2008)

    Article  Google Scholar 

  45. Simpson, T.W., Maurey, T.M., Korte, J.J., Mistree, F.: Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA Journal 39, 2233–2241 (2001)

    Article  Google Scholar 

  46. Simpson, T.W., Peplinski, J., Koch, P.N., Allen, J.K.: Metamodels for computer-based engineering design: survey and recommendations. Engineering with Computers 17, 129–150 (2001)

    Article  MATH  Google Scholar 

  47. Sonnet em Version 11.54, Sonnet Software, Inc., North Syracuse, NY, USA (2008)

    Google Scholar 

  48. Van Beers, W.C.M., Kleijnen, J.P.C.: Kriging interpolation in simulation: survey. In: Proc. 2004 Winter Simulation Conf., pp. 113–121 (2004)

    Google Scholar 

  49. Wu, K.L., Zhao, Y.J., Wang, J., Cheng, M.K.K.: An effective dynamic coarse model for optimization design of LTCC RF circuits with aggressive space mapping. IEEE Trans. Microwave Theory Tech. 52, 393–402 (2004)

    Article  Google Scholar 

  50. Zhang, L., Xu, J., Yagoub, M.C.E., Ding, R., Zhang, Q.J.: Efficient analytical formulation and sensitivity analysis of neuro-space mapping for nonlinear microwave device modeling. IEEE Trans. Microwave Theory Tech. 53, 2752–2767 (2005)

    Article  Google Scholar 

  51. Zhu, J., Bandler, J.W., Nikolova, N.K., Koziel, S.: Antenna optimization through space mapping. IEEE Trans. Antennas and Propagation 55, 651–658 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koziel, S., Bandler, J.W. (2010). Knowledge-Based Variable-Fidelity Optimization of Expensive Objective Functions through Space Mapping. In: Tenne, Y., Goh, CK. (eds) Computational Intelligence in Expensive Optimization Problems. Adaptation Learning and Optimization, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10701-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10701-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10700-9

  • Online ISBN: 978-3-642-10701-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics