Skip to main content

A Knowledge Discovery Approach to Understanding Relationships between Scheduling Problem Structure and Heuristic Performance

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5851))

Abstract

Using a knowledge discovery approach, we seek insights into the relationships between problem structure and the effectiveness of scheduling heuristics. A large collection of 75,000 instances of the single machine early/tardy scheduling problem is generated, characterized by six features, and used to explore the performance of two common scheduling heuristics. The best heuristic is selected using rules from a decision tree with accuracy exceeding 97%. A self-organizing map is used to visualize the feature space and generate insights into heuristic performance. This paper argues for such a knowledge discovery approach to be applied to other optimization problems, to contribute to automation of algorithm selection as well as insightful algorithm design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rice, J.R.: The Algorithm Selection Problem. Adv. Comp. 15, 65–118 (1976)

    Google Scholar 

  2. Watson, J.P., Barbulescu, L., Howe, A.E., Whitley, L.D.: Algorithm Performance and Problem Structure for Flow-shop Scheduling. In: Proc. AAAI Conf. on Artificial Intelligence, pp. 688–694 (1999)

    Google Scholar 

  3. Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimization. IEEE T. Evolut. Comput. 1, 67 (1997)

    Article  Google Scholar 

  4. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Satzilla-07: The Design and Analysis of An Algorithm Portfolio For SAT. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 712–727. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the Empirical Hardness of Optimization Problems: The Case of Combinatorial Auctions. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 556–569. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: A Portfolio Approach to Algorithm Selection. In: Proc. IJCAI, pp. 1542–1543 (2003)

    Google Scholar 

  7. Nudelman, E., Leyton-Brown, K., Hoos, H., Devkar, A., Shoham, Y.: Understanding Random SAT: Beyond the Clauses-To-Variables Ratio. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 438–452. Springer, Heidelberg (2004)

    Google Scholar 

  8. Horvitz, E., Ruan, Y., Gomes, C., Kautz, H., Selman, B., Chickering, M.: A Bayesian Approach to Tackling Hard Computational Problems. In: Proc. 17th Conf. on Uncertainty in Artificial Intelligence, pp. 235–244. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  9. Samulowitz, H., Memisevic, R.: Learning to solve QBF. In: Proc. 22nd AAAI Conf. on Artificial Intelligence, pp. 255–260 (2007)

    Google Scholar 

  10. Streeter, M., Golovin, D., Smith, S.F.: Combining multiple heuristics online. In: Proc. 22nd AAAI Conf. on Artificial Intelligence, pp. 1197–1203 (2007)

    Google Scholar 

  11. Vilalta, R., Drissi, Y.: A Perspective View and Survey of Meta-Learning. Artif. Intell. Rev. 18, 77–95 (2002)

    Article  Google Scholar 

  12. Michie, D., Spiegelhalter, D.J., Taylor, C.C. (eds.): Machine Learning, Neural and Statistical Classification. Ellis Horwood, New York (1994)

    MATH  Google Scholar 

  13. Brazdil, P., Soares, C., Costa, J.: Ranking Learning Algorithms: Using IBL and Meta-Learning on Accuracy and Time Results. Mach. Learn. 50, 251–277 (2003)

    Article  MATH  Google Scholar 

  14. Ali, S., Smith, K.: On Learning Algorithm Selection for Classification. Appl. Soft Comp. 6, 119–138 (2006)

    Article  Google Scholar 

  15. Stützle, T., Fernandes, S.: New Benchmark Instances for the QAP and the Experimental Analysis of Algorithms. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp. 199–209. Springer, Heidelberg (2004)

    Google Scholar 

  16. Carchrae, T., Beck, J.C.: Applying Machine Learning to Low Knowledge Control of Optimization Algorithms. Comput. Intell. 21, 373–387 (2005)

    Article  MathSciNet  Google Scholar 

  17. Shaw, M.J., Park, S., Raman, N.: Intelligent Scheduling With Machine Learning Capabilities: The Induction of Scheduling Knowledge. IIE Trans. 24, 156–168 (1992)

    Article  Google Scholar 

  18. Knowles, J.D., Corne, D.W.: Towards Landscape Analysis to Inform the Design of a Hybrid Local Search for the Multiobjective Quadratic Assignment Problem. In: Abraham, A., Ruiz-Del-Solar, J., Koppen, M. (eds.) Soft Computing Systems: Design, Management and Applications, pp. 271–279. IOS Press, Amsterdam (2002)

    Google Scholar 

  19. Merz, P.: Advanced Fitness Landscape Analysis and the Performance of Memetic Algorithms. Evol. Comp. 2, 303–325 (2004)

    Article  Google Scholar 

  20. Watson, J., Beck, J.C., Howe, A.E., Whitley, L.D.: Problem Difficulty for Tabu Search in Job-Shop Scheduling. Artif. Intell. 143, 189–217 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Smith-Miles, K.A.: Cross-Disciplinary Perspectives on Meta-Learning For Algorithm Selection. ACM Computing Surveys (in press, 2009)

    Google Scholar 

  22. Baker, K.R., Scudder, G.D.: Sequencing With Earliness and Tardiness Penalties: A Review. Ops. Res. 38, 22–36 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. James, R.J.W., Buchanan, J.T.: A Neighbourhood Scheme with a Compressed Solution Space for The Early/Tardy Scheduling Problem. Eur. J. Oper. Res. 102, 513–527 (1997)

    Article  MATH  Google Scholar 

  24. Fry, T.D., Armstrong, R.D., Blackstone, J.H.: Minimizing Weighted Absolute Deviation in Single Machine Scheduling. IIE Transactions 19, 445–450 (1987)

    Article  Google Scholar 

  25. Vollmann, T.E., Berry, W.L., Whybark, D.C., Jacobs, F.R.: Manufacturing Planning and Control for Supply Chain Management, 5th edn. McGraw Hill, New York (2005)

    Google Scholar 

  26. Krajewski, L.J., Ritzman, L.P.: Operations Management: Processes and Value Chains, 7th edn. Pearson Prentice Hall, New Jersey (2005)

    Google Scholar 

  27. Schiavinotto, T., Stützle, T.: A review of metrics on permutations for search landscape analysis. Comput. Oper. Res. 34, 3143–3153 (2007)

    Article  MATH  Google Scholar 

  28. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.G.: Meta-Learning by Landmarking Various Learning Algorithms. In: Proc. ICML, pp. 743–750 (2000)

    Google Scholar 

  29. Baker, K.B., Martin, J.B.: An Experimental Comparison of Solution Algorithms for the Single Machine Tardiness Problem. Nav. Res. Log. 21, 187–199 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  30. Burke, E., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S.: Hyper-heuristics: An Emerging Direction in Modern Search Technology. In: Glover, F., Kochenberger, G. (eds.) Handbook of Meta-heuristics, pp. 457–474. Kluwer, Norwell (2002)

    Google Scholar 

  31. Smith, K.A.: Neural Networks for Prediction and Classification. In: Wang, J. (ed.) Encyclopaedia of Data Warehousing and Mining, vol. 2, pp. 865–869. Information Science Publishing, Hershey (2006)

    Google Scholar 

  32. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  33. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  34. Kohonen, T.: Self-Organized Formation of Topologically Correct Feature Maps. Biol. Cyber. 43, 59–69 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  35. Achlioptas, D., Naor, A., Peres, Y.: Rigorous Location of Phase Transitions in Hard Optimization Problems. Nature 435, 759–764 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smith-Miles, K.A., James, R.J.W., Giffin, J.W., Tu, Y. (2009). A Knowledge Discovery Approach to Understanding Relationships between Scheduling Problem Structure and Heuristic Performance. In: Stützle, T. (eds) Learning and Intelligent Optimization. LION 2009. Lecture Notes in Computer Science, vol 5851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11169-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11169-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11168-6

  • Online ISBN: 978-3-642-11169-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics