Skip to main content

Fungal Biodegradation of Lignocelluloses

  • Chapter
  • First Online:
Industrial Applications

Part of the book series: The Mycota ((MYCOTA,volume 10))

Abstract

Many fungi degrade cellulose and hemicelluloses using extracellular hydrolytic enzymes, but fungi that degrade woody biomass are the only ones to efficiently degrade polysaccharides encased in lignin. White-rot basidiomycetes begin by mineralizing the lignin, using extracellular oxidative enzymes to cleave this recalcitrant biopolymer. Enzymes with likely roles include lignin peroxidases, manganese peroxidases, versatile peroxidases and laccases. In some cases the enzyme may attack the lignin polymer directly; in others the ligninolytic agent is likely a small molecule that one of the enzymes has oxidized to a reactive form. So far, all white rot fungi appear to secrete manganese peroxidases, and most produce laccases, whereas the other two enzymes are less common. After ligninolysis, white-rot fungi assimilate the remaining polysaccharides using conventional glycosylhydrolase systems that contain both endo- and exo-acting enzymes. Brown rot basidiomycetes also degrade lignocellulose efficiently, but their biodegradative systems are less comprehensive. These fungi generally lack ligninolytic enzymes, initiating decay instead with reactive oxygen species generated from the reaction between Fe2+ and H2O2. The limited disruption caused by these oxidants apparently allows a limited set of endo-acting glycosylhydrolases to depolymerize the remaining polysaccharides. Biological wood pulping is one promising application of ligninolytic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar M, Blanchette RA, Myers GC, Kirk TK (1998) An overview of biomechanical pulping research. In: Young RA, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 309–419

    Google Scholar 

  • Ander P, Eriksson KE (1977) Selective degradation of wood components by white-rot fungi. Physiol Plant 41:239–248

    CAS  Google Scholar 

  • Ander P, Hatakka A, Eriksson K-E (1980) Vanillic acid metabolism by the white-rot fungus Sporotrichum pulverulentum. Arch Microbiol 125:189–202

    CAS  Google Scholar 

  • Argyropoulos DS, Menachem SB (1997) Lignin. Adv Biochem Eng Biotechnol 57:127–158

    CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases – occurrence and properties. FEMS Microbiol Rev 30:215–242

    CAS  Google Scholar 

  • Baldrian P, Valášková V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521

    CAS  Google Scholar 

  • Bao W, Fukushima Y, Jensen KA, Moen MA, Hammel KE (1994) Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett 354:297–300

    Google Scholar 

  • Bavendamm W (1928) Über das Vorkommen den Nachweis von Oxydasen bei holzzerstörenden Pilzen. Z Pflanzenkr Pflanzenschutz 38:257–276

    CAS  Google Scholar 

  • Berka RM, Schneider P, Golightly EJ, Brown SH, Madden M, Brown KM, Halkier T, Mondorf K, Xu F (1997) Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme expressed in Aspergillus oryzae. Appl Environ Microbiol 63:3151–3157

    CAS  Google Scholar 

  • Bermek H, Yazici H, Öztürk, Tamerler C, Jung H, Li K, Brown KM, Ding H, Xu F (2004) Purification and characterization of manganese peroxidase from wood-degrading fungus Trichophyton rubrum LSK-27. Enzyme Microb Technol 35:87–92

    CAS  Google Scholar 

  • Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C (2002) Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochem 41:7325–7333

    CAS  Google Scholar 

  • Blanchette RA (1995) Degradation of the lignocellulose complex in wood. Can J Bot 73[Suppl 1]:S999–S1010

    CAS  Google Scholar 

  • Blanchette RA, Burnes TA, Leatham GF, Effland MJ (1988) Selection of white-rot fungi for biopulping. Biomass 15:93–101

    CAS  Google Scholar 

  • Blanchette RA, Burnes TA, Eerdmans MM, Akhtar M (1992) Evaluating isolates of Phanerochaete chrysosporium and Ceriporiopsis subvermispora for use in biological pulping processes. Holzforschung 46:109–115

    CAS  Google Scholar 

  • Bollag J-M, Leonowicz A (1984) Comparative studies of extracellular fungal laccases. Appl Environ Microbiol 48:849–854

    CAS  Google Scholar 

  • Bollag JM, Shuttleworth KL, Anderson DH (1988) Laccase-mediated detoxification of phenolic compounds. Appl Environ Microbiol 54:3086–3091

    CAS  Google Scholar 

  • Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102

    CAS  Google Scholar 

  • Buswell JA, Odier E (1987) Lignin biodegradation. Crit Rev Biotechnol 6:1–60

    CAS  Google Scholar 

  • Call HP, Mücke I (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (LignozymR-process). J Biotechnol 53:163–202

    CAS  Google Scholar 

  • Camarero S, Ibarra D, Martínez MJ, Martínez ÁT (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol 71:1775–1784

    CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    CAS  Google Scholar 

  • Cho NS, Hatakka AI, Rogalski J, Cho HY, Ohga S (2009) Directional degradation of lignocellulose by Phlebia radiata. J Fac Agric Kyushy Univ 54:73–80

    CAS  Google Scholar 

  • Cohen R, Suzuki MR, Hammel KE (2005) Processive endoglucanase active in crystalline cellulose hydrolysis by the brown-rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 71:2412–2417

    CAS  Google Scholar 

  • Cowling EB (1961) Comparative biochemistry of the decay of sweetgum sapwood by white-rot and brown-rot fungi. USDA Tech Bull 1258

    Google Scholar 

  • Cunha GGS, Masarin F, Norambuena M, Freer J, Ferraz A (2010) Linoleic acid peroxidation and lignin degradation by enzymes produced by Ceriporiopsis subvermispora grown on wood or in submerged liquid cultures. Enzyme Microb Technol 46:262–267

    CAS  Google Scholar 

  • Decker SR, Siika-Aho M, Viikari L (2008) Enzymatic depolymerization of plant cell wall hemicelluloses. In: Himmel ME (ed) Biomass recalcitrance. Deconstruction of the plant cell wall for bioenergy. Blackwell, London, pp 353–373

    Google Scholar 

  • Dedeyan B, Klonowska A, Tagger S, Tron T, Iacazio G, Gil G, Petit JL (2000) Biochemical and molecular characterization of a laccase from Marasmius quercophilus. Appl Environ Microbiol 66:925–929

    CAS  Google Scholar 

  • Ding S-Y, Himmel ME (2008) Anatomy and ultrastructure of maize cell walls: an example of energy plants. In: Himmel ME (ed) Biomass recalcitrance. Deconstruction of the plant cell wall for bioenergy. Blackwell, London, pp 38–60

    Google Scholar 

  • D’Souza TM, Boominathan K, Reddy CA (1996) Isolation of laccase gene-specific sequences from white-rot and brown-rot fungi by PCR. Appl Environ Microbiol 62:3739–3744

    Google Scholar 

  • Ducros V, Brzozowski AM, Wilson KS, Brown SH, Østergaard P, Schneider P, Yaver DS, Pedersen AH, Davies GJ (1998) Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 Å resolution. Nat Struct Biol 5:310–316

    CAS  Google Scholar 

  • Eggert C, Temp U, Dean JFD, Eriksson KEL (1996) A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett 391:144–148

    CAS  Google Scholar 

  • Enoki A, Hirano T, Tanaka H (1992) Extracellular substance from the brown-rot basidiomycete Gloeophyllum trabeum that produces and reduces hydrogen peroxide. Mater Org 27:247–261

    CAS  Google Scholar 

  • Enoki A, Itakura S, Tanaka H (1997) The involvement of extracellular substances for reducing molecular oxygen to hydroxyl radical and ferric iron to ferrous iron in wood degradation by wood decay fungi. J Biotechnol 53:265–272

    CAS  Google Scholar 

  • Eriksson KE, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ferraroni M, Myasoedova N, Schmatchenko V, Leontievsky AA, Golovleva LA, Scozzafava A, Briganti F (2007) Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BMC Struct Biol 7:60–72

    Google Scholar 

  • Ferraz A, Guerra A, Mendonça R, Masarin F, Vicentim MP, Aguiar A, Pavan PC (2008) Technological advances and mechanistic basis for fungal biopulping. Enzyme Microb Technol 43:178–185

    CAS  Google Scholar 

  • Ferrer I, Esposito E, Duran N (1992) Lignin peroxidase from Chrysonilia sitophila : Heat-denaturation kinetics and pH stability. Enzyme Microb Technol 14:402–406

    CAS  Google Scholar 

  • Filley TR, Cody GD, Goodell B, Jellison J, Noser C, Ostrofsky A (2002) Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown-rot fungi. Org Geochem 33:111–124

    CAS  Google Scholar 

  • Foust TD, Ibsen KN, Dayton DC, Hess JR, Kenney KE (2008) The biorefinery. In: Himmel ME (ed) Biomass recalcitrance. Deconstruction of the plant cell wall for bioenergy. Blackwell, London, pp 7–37

    Google Scholar 

  • Fritsche W, Hofrichter M (2004) Aerobic degradation of recalcitrant organic compounds by microorganisms. In: Jördening H-J, Winter J (eds) Environmental biotechnology. Wiley-VCH, Weinheim, pp 203–227

    Google Scholar 

  • Galhaup C, Haltrich D (2001) Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Appl Microbiol Biotechnol 56:225–232

    CAS  Google Scholar 

  • Galkin S, Vares T, Kalsi M, Hatakka A (1998) Production of organic acids by different white-rot fungi as detected using capillary zone electrophoresis. Biotechnol Tech 12:267–271

    CAS  Google Scholar 

  • Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67: 369–385

    CAS  Google Scholar 

  • Gilbertson RL (1980) Wood-rotting fungi of North America. Mycologia 72:1–49

    Google Scholar 

  • Gilbertson RL, Ryvarden L (1986) North American polypores. Fungiflora, Oslo

    Google Scholar 

  • Gold MH, Youngs HL, Sollewijn Gelpke MD (2000) Manganese peroxidase. In: Sigel A, Sigel H (eds) Metal ions in biological systems. Dekker, New York, pp 559–586

    Google Scholar 

  • Gonzales L, Hernáandez JR, Perestelo F, Carnicero A, Falcón MA (2002) Relationship between mineralization of synthetic lignins and the generation of hydroxyl radicals by laccase and a low-molecular weight substance produced by Petriellidium fusoideum. Enzyme Microb Technol 30:474–481

    CAS  Google Scholar 

  • Gramss G (1992) Invasion of wood by basidiomycetous fungi. VI. Quantitative but not qualitative differences in the pathovirulence of pathogenic and saprophytic decay fungi. J Basic Microbiol 32:75–90

    Google Scholar 

  • Green F, Larsen MJ, Winandy JE, Highley TL (1991) Role of oxalic-acid in incipient brown-rot decay. Mater Org 26:191–213

    CAS  Google Scholar 

  • Haider K, Trojanowski J (1975) Decomposition of specifically 14C-labelled phenol and dehydropolymers of coniferyl alcohols as model for lignin degradation by soft- and white-rot fungi. Arch Microbiol 105:33–41

    CAS  Google Scholar 

  • Hakala TK, Maijala P, Konn J, Hatakka A (2004) Evaluation of novel wood-rotting polypores and corticioid fungi for the decay and biopulping of Norway spruce (Picea abies) wood. Enzyme Microb Technol 34:255–263

    CAS  Google Scholar 

  • Hakala TK, Lundell T, Galkin S, Maijala P, Kalkkinen N, Hatakka A (2005) Manganese peroxidases, laccases and oxalic acid from the selective white-rot fungus Physisporinus rivulosus grown on spruce wood chips. Enzyme Microb Technol 36:461–468

    CAS  Google Scholar 

  • Hakala TK, Hildén K, Maijala P, Olsson C, Hatakka A (2006) Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus. Appl Microbiol Biotechnol 73:839–849

    CAS  Google Scholar 

  • Hakulinen N, Kiiskinen L-L, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J (2002) Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Biol 9:601–605

    CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355

    CAS  Google Scholar 

  • Hammel KE, Kapich AN, Jensen KA, Ryan ZC (2002) Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb Technol 30:445–453

    CAS  Google Scholar 

  • Harreither W, Sygmund C, Dünhofen E, Vicuna R, Haltrich D, Ludwig R (2009) Cellobiose dehydrogenase from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Appl Environ Microbiol 75:2750–2757

    CAS  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi – production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    CAS  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Hofrichter M, Steinbüchel A (eds) Biopolymers, vol 1: Lignin, humic substances and coal. Wiley-VCH, Weinheim, pp 129–180

    Google Scholar 

  • Hatakka A, Uusi-Rauva AK (1983) Degradation of 14C-labelled poplar wood lignin by selected white-rot fungi. Eur J Appl Microbiol Biotechnol 17:235–242

    CAS  Google Scholar 

  • Hatakka A, Buswell JA, Pirhonen TI, Uusi-Rauva AK (1983) Degradation of 14C‑labelled lignins by white-rot fungi. In: Higuchi T, Chang H-M, Kirk TK (eds) Recent advances in lignin biodegradation research. UNI Publishers, Tokyo, pp 176–187

    Google Scholar 

  • Hatakka A, Lundell T, Hofrichter M, Maijala P (2003) Manganese peroxidase and its role in the degradation of wood lignin. In: Mansfield SD, Saddler JN (eds) Applications of enzymes to lignocellulosics. ACS symposium series 855. ACS, New York, pp 230–243

    Google Scholar 

  • Heidorne FO, Magalhães PO, Ferraz AL, Milagres AMF (2006) Characterization of hemicellulases and cellulases produced by Ceriporiopsis subvermispora grown on wood under biopulping conditions. Enzyme Microb Technol 38:436–442

    CAS  Google Scholar 

  • Henriksson G, Johansson G, Pettersson G (2000) A critical review of cellobiose dehydrogenases. J Biotechnol 78:93–113

    CAS  Google Scholar 

  • Herr D, Baumer F, Dellweg H (1978) Purification and properties of an extracellular endo-1,4-beta-glucanase from Lenzites trabea. Arch Microbiol 117:287–292

    CAS  Google Scholar 

  • Hibbett DS, Thorn RG (2001) Basidiomycota: Homobasidiomycetes. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota. Springer, Berlin Heidelberg New York, pp 121–168

    Google Scholar 

  • Higuchi T (1990) Biosynthesis of lignin. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hildén K, Martinez AT, Hatakka A, Lundell T (2005) The two manganese peroxidases Pr-MnP2 and Pr-MnP3 of Phlebia radiata, a lignin-degrading basidiomycete, are phylogenetically and structurally divergent. Fungal Gen Biol 42:403–419

    Google Scholar 

  • Hildén KS, Bortfeldt R, Hofrichter M, Hatakka A, Lundell TK (2008) Molecular characterization of the basidiomycete isolate Nematoloma frowardii b19 and its manganese peroxidase places the fungus in the corticioid genus Phlebia. Microbiology 154:2371–2379

    Google Scholar 

  • Hoegger PJ, Kilaru S, James TY, Thacker JR, Kues U (2006) Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273:2308–2326

    CAS  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466

    CAS  Google Scholar 

  • Hofrichter M, Vares K, Scheibner K, Galkin S, Sipilä J, Hatakka A (1999a) Mineralization and solubilization of synthetic lignin by manganese peroxidases from Nematoloma frowardii and Phlebia radiata. J Biotechnol 67:217-228

    CAS  Google Scholar 

  • Hofrichter M, Vares T, Kalsi M, Galkin S, Scheibner K, Fritsche W, Hatakka A (1999b) Production of manganese peroxidase and organic acids and mineralization of 14C-labelled lignin (14C-DHP) during solid-state fermentation of wheat straw with the white-rot fungus Nematoloma frowardii. Appl Environ Microbiol 65:1864–1870

    CAS  Google Scholar 

  • Hyde SM, Wood PM (1997) A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophora puteana: Fe(III) reduction by cellobiose dehydrogenase and Fe(II) oxidation at a distance from the hyphae. Microbiology 143:259–266

    CAS  Google Scholar 

  • Irbe I, Andersone I, Andersons B, Chirkova J (2001) Use of C-13 NMR, sorption and chemical analyses for characteristics of brown-rotted Scots pine. Int Biodeter Biodeg 47:37–45

    CAS  Google Scholar 

  • Irwin DC, Spezio M, Walker LP, Wilson DB (1993) Activity studies of eight purified cellulases – specificity, synergism, and binding domain effects. Biotechnol Bioeng 42:1002–1013

    CAS  Google Scholar 

  • Käärik A (1965) The identification of the mycelia of wood-decay fungi by their oxidation reactions with phenolic compounds. Stud For Suec 31:1–79

    Google Scholar 

  • Kanayama N, Suzuki T, Kawai K (2002) Purification and characterization of an alkaline manganese peroxidase from Aspergillus terreus LD-1. J Biosci Bioeng 93:405–410

    CAS  Google Scholar 

  • Kapich A, Hofrichter M, Vares T, Hatakka A (1999) Coupling of manganese peroxidase-mediated lipid peroxidation with destruction of nonphenolic lignin model compounds and 14C-labeled lignins. Biochem Biophys Res Commun 259:212–219

    CAS  Google Scholar 

  • Kapich AN, Steffen KT, Hofrichter M, Hatakka A (2005) Involvement of lipid peroxidation in the degradation of a non-phenolic lignin model compound by manganese peroxidase of the litter-decomposing fungus Stropharia coronilla. Biochem Biophys Res Commun 330:371–377

    CAS  Google Scholar 

  • Karhunen P, Rummakko P, Sipilä J, Brunow G, Kilpeläinen I (1995) Dibenzodioxocins; a novel type of linkage in softwood lignins. Tetrahedron Lett 36:169–170

    CAS  Google Scholar 

  • Kawai SK, Jensen KA, Bao W, Hammel KE (1995) New polymeric model substrates for the study of microbial ligninolysis. Appl Environ Microbiol 61:3407–3414

    CAS  Google Scholar 

  • Kawai S, Iwatsuki M, Nakagawa M, Inagaki M, Hamabe A, Ohashi H (2004) An alternative β-ether cleavage pathway for a non-phenolic β-O-4 lignin model dimer catalyzed by a laccase-mediator system. Enzyme Microb Technol 35:154–160

    CAS  Google Scholar 

  • Kerem Z, Jensen KA, Hammel KE (1999) Biodegradative mechanism of the brown-rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett 446:49–54

    CAS  Google Scholar 

  • Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44:77–87

    CAS  Google Scholar 

  • Kirk TK (1975) Effects of a brown-rot fungus, Lenzites trabea, on lignin in spruce wood. Holzforschung 29:99–107

    CAS  Google Scholar 

  • Kirk TK, Adler E (1970) Methoxyl-deficient structural elements in lignin of sweetgum decayed by a brown-rot fungus. Acta Chem Scand 24:3379–3390

    CAS  Google Scholar 

  • Kirk TK, Cullen D (1998) Enzymology and molecular genetics of wood degradation by white-rot fungi. In: Young RA, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 273–307

    Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Ann Rev Microbiol 41:465–505

    CAS  Google Scholar 

  • Kirk TK, Connors WJ, Bleam RD, Hackett WF, Zeikus JG (1975) Preparation and microbial decomposition of synthetic (14C) lignins. Proc Natl Acad Sci USA 72:2515–2519

    CAS  Google Scholar 

  • Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:277–285

    CAS  Google Scholar 

  • Kirk TK, Ibach R, Mozuch MD, Conner AH, Highley TL (1991) Characteristics of cotton cellulose depolymerized by a brown-rot fungus, by acid, or by chemical oxidants. Holzforschung 45:239–244

    CAS  Google Scholar 

  • Kishi K, Wariishi H, Marquez L, Dunford BH, Gold MH (1994) Mechanism of manganese peroxidase II reduction. Effect of organic acid chelators and pH. Biochemistry 33:8694–8701

    CAS  Google Scholar 

  • Kluczek-Turpeinen B, Tuomela M, Hatakka A, Hofrichter M (2003) Lignin degradation in a compost environment by the deuteromycete Paecilomyces inflatus. Appl Microbiol Biotechnol 61:374–379

    CAS  Google Scholar 

  • Koenigs JW (1974) Production of hydrogen peroxide by wood-rotting fungi in wood and its correlation with weight loss, depolymerization, and pH changes. Arch Microbiol 99:129–145

    CAS  Google Scholar 

  • Lee KH, Wi SG, Singh AP, Kim YS (2004) Micromorphological characteristics of decayed wood and laccase produced by the brown-rot fungus Coniophora puteana. J Wood Sci 50:281–284

    Google Scholar 

  • Levasseur A, Piumi F, Coutinho PM, Rancurel C, Asther M, Delattre M, Henrissat B, Pontarotti P, Asther M, Record E (2008) FOLy: An integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Gen Biol 45:638–645

    CAS  Google Scholar 

  • Liers C, Ullrich R, Steffen KT, Hatakka A, Hofrichter M (2006) Mineralization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylon and Xylaria polymorpha. Appl Microbiol Biotechnol 69:573–579

    CAS  Google Scholar 

  • Lobos S, Tello M, Polanco R, Larrondo LF, Manubens A, Salas L, Vicuña R (2001) Enzymology and molecular genetics of the ligninolytic system of the basidiomycete Ceriporiopsis subvermispora. Curr Sci 81:992–997

    CAS  Google Scholar 

  • Lundell T, Mäkela M, Hildén K (2010) Lignin-modifying enzymes in filamentous basidiomycetes: ecological, functional and phylogenetic review. J Basic Microbiol 50:1–16

    Google Scholar 

  • Lundquist K, Kirk TK (1978) De novo synthesis and decomposition of veratryl alcohol by a lignin-degrading basidiomycete. Phytochemistry 17:1676

    CAS  Google Scholar 

  • Luthardt W (1969) Was ist Mykoholz? (What is mycowood?) Ziemsen, Wittenberg

    Google Scholar 

  • Luthardt W (2005) Holzbewohnende Pilze: Anzucht und Holzmykologie (Wood colonizing fungi: cultivation and wood mycology), 2nd edn. Die Neue Brehm-Bücherei Bd 403

    Google Scholar 

  • Machuca A, Ferraz A (2001) Hydrolytic and oxidative enzymes produced by white- and brown-rot fungi during Eucalyptus grandis decay in solid medium. Enzyme Microb Technol 29:386–391

    CAS  Google Scholar 

  • Maijala P, Kleen M, Westin C, Poppius-Levlin K, Herranen K, Lehto JH, Reponen P, Mäentausta O, Mettälä A, Hatakka A (2008) Biomechanical pulping of softwood with enzymes and white-rot fungus Physisporinus rivulosus. Enzyme Microb Technol 43:169–177

    CAS  Google Scholar 

  • Mäkelä M, Galkin S, Hatakka A, Lundell T (2002) Production of organic acids and oxalate decarboxylase in lignin-degrading white-rot fungi. Enzyme Microb Technol 30:542–549

    Google Scholar 

  • Mäkelä MR, Hildén K, Hatakka A, Lundell TK (2009) Oxalate decarboxylase of the white-rot fungus Dichomitus squalens demonstrates a novel enzyme primary structure and non-induced expression on wood and in liquid cultures. Microbiology 155:2726–2738

    Google Scholar 

  • Mansfield SD, Saddler JN, Gübitz GM (1998) Characterization of endoglucanases from the brown-rot fungi Gloeophyllum sepiarium and Gloeophyllum trabeum. Enzyme Microb Technol 23:133–140

    CAS  Google Scholar 

  • Martínez AT (2002) Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb Technol 30:425–444

    Google Scholar 

  • Martínez ÁT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, Del Río JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204

    Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Sollewijn-Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    CAS  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, Lopez de Leon A, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin ER, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560

    CAS  Google Scholar 

  • Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Dueñas FJ, Martinez AT, Kersten P, Hammel KE, Wymelenberg AV, Gaskell J, Lindquist E, Sabat G, BonDurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavin JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kües U, Ramaiya P, Lucash S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA 106:1954–1959

    CAS  Google Scholar 

  • Medve J, Karlsson J, Lee D, Tjerneld F (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: Adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol Bioeng 59:621–634

    CAS  Google Scholar 

  • Miki Y, Morales M, Ruiz-Dueñas FJ, Martinez MJ, Wariishi H, Martinez AT (2009) Escherichia coli expression and in vitro activation of a unique ligninolytic peroxidase that has a catalytic tyrosine residue. Protein Expr Purif 68:208–214

    CAS  Google Scholar 

  • Morgenstern I, Klopman S, Hibbett DS (2008) Molecular evolution and diversity of lignin degrading heme peroxidases in the Agaricomycetes. J Mol Evol 66:243–257

    CAS  Google Scholar 

  • Niemenmaa O, Uusi-Rauva A, Hatakka A (2008) Demethoxylation of [(OCH3)-C-14]-labelled lignin model compounds by the brown-rot fungi Gloeophyllum trabeum and Poria (Postia) placenta. Biodegradation 19:555–565

    CAS  Google Scholar 

  • Nilsson T, Ginns J (1979) Cellulolytic activity and the taxonomic position of selected brown-rot fungi. Mycologia 71:170–177

    Google Scholar 

  • Nilsson T, Daniel G, Kirk TK, Obst JR (1989) Chemistry and microscopy of wood decay by some higher ascomycetes. Holzforschung 43:11–18

    CAS  Google Scholar 

  • Nousiainen P, Maijala P, Hatakka A, Martinez AT, Sipilä J (2009) Syringyl-type simple plant phenolics as mediating oxidants in laccase catalyzed degradation of lignocellulosic materials: Model compound studies. Holzforschung 63:699–704

    CAS  Google Scholar 

  • Orth AB, Royse DJ, Tien M (1993) Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi. Appl Environ Microbiol 59:4017–4023

    CAS  Google Scholar 

  • Otjen L, Blanchette RA (1987) Assessment of 30 white-rot basidiomycetes for selective lignin degradation. Holzforschung 41:343–349

    CAS  Google Scholar 

  • Park JSB, Wood PM, Davies MJ, Gilbert BC, Whitwood AC (1997) A kinetic and ESR investigation of Iron(II) oxalate oxidation by hydrogen peroxide and dioxygen as a source of hydroxyl radicals. Free Radical Res 27:447–458

    CAS  Google Scholar 

  • Paszczynski A, Crawford R, Funk D, Goodell B (1999) De novo synthesis of 4,5-dimethoxycatechol and 2,5-dimethoxyhydroquinone by the brown-rot fungus Gloeophyllum trabeum. Appl Environ Microbiol 65:674–679

    CAS  Google Scholar 

  • Perez J, Jeffries T (1992) Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium. Appl Environ Microbiol 58:2402–2409

    CAS  Google Scholar 

  • Pérez-Boada M, Ruiz-Dueñas FJ, Pogni R, Basosi R, Choinowski T, Martínez MJ, Piontek K, Martínez AT (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol 354:385–402

    Google Scholar 

  • Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. J Biol Chem 277:37663–37669

    CAS  Google Scholar 

  • Regalado V, Rodríguez A, Perestelo F, Carnicero A, De La Fuente G, Falcon MA (1997) Lignin degradation and modification by the soil-inhabiting fungus Fusarium proliferatum. Appl Environ Microbiol 63:3716–3718

    CAS  Google Scholar 

  • Regalado V, Perestelo F, Rodríguez A, Carnicero A, Sosa FJ, De La Fuente G, Falcón MA (1999) Activated oxygen species and two extracellular enzymes: Laccase and aryl-alcohol oxidase, novel for the lignin-degrading fungus Fusarium proliferatum. Appl Microbiol Biotechnol 51:388–390

    CAS  Google Scholar 

  • Ritschkoff AC, Buchert J, Viikari L (1994) Purification and characterization of a thermophilic xylanase from the brown-rot fungus Gloeophyllum trabeum. J Biotechnol 32:67–74

    CAS  Google Scholar 

  • Rochefort D, Leech D, Bourbonnais R (2004) Electron transfer mediator systems for bleaching of paper pulp. Green Chem 6:14–24

    CAS  Google Scholar 

  • Rodriguez A, Carnicero A, Perestelo F, De la Fuente G, Milstein O, Falcon MA (1994) Effect of Penicillium chrysogenum on lignin transformation. Appl Environ Microbiol 60:2971–2976

    CAS  Google Scholar 

  • Rodriguez A, Perestelo F, Carnicero A, Regalado V, Perez R, De La Fuente G, Falcon MA (1996) Degradation of natural lignins and lignocellulosic substrates by soil-inhabiting fungi imperfecti. FEMS Microbiol Ecol 21:213–219

    CAS  Google Scholar 

  • Ruiz-Dueñas FJ, Martínez ÁT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2:164–177

    Google Scholar 

  • Ruiz-Dueñas FJ, Morales M, Garcia E, Miki Y, Martinez MJ, Martinez AT (2009) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60:441–452

    Google Scholar 

  • Schmidhalter DR, Canevascini G (1992) Characterization of the cellulolytic enzyme system from the brown-rot fungus Coniophora puteana. Appl Microbiol Biotechnol 37:431–436

    CAS  Google Scholar 

  • Schneider P, Caspersen MB, Mondorf K, Halkier T, Skov LK, Ostergaard PR, Brown KM, Brown SH, Xu F (1999) Characterization of a Coprinus cinereus laccase. Enzyme Microb Technol 25:502–508

    CAS  Google Scholar 

  • Shary S, Kapich AN, Panisko EA, Magnuson JK, Cullen D, Hammel KE (2008) Differential expression in Phanerochaete chrysosporium of membrane-associated proteins relevant to lignin degradation. Appl Environ Microbiol 74:7252–7257

    CAS  Google Scholar 

  • Shimokawa T, Nakamura M, Hayashi N, Ishihara M (2004) Production of 2,5-dimethoxyhydroquinone by the brown-rot fungus Serpula lacrymans to drive extracellular Fenton reaction. Holzforschung 58:305–310

    CAS  Google Scholar 

  • Sjöström E (1993) Wood chemistry, fundamentals and applications. Academic, San Diego

    Google Scholar 

  • Steffen KT, Hofrichter M, Hatakka A (2000) Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54:819–825

    CAS  Google Scholar 

  • Steffen KT, Hofrichter M, Hatakka A (2002) Purification and characterization of manganese peroxidases from the litter-decomposing basidiomycetes Agrocybe praecox and Stropharia coronilla. Enzyme Microb Technol 30:550–555

    CAS  Google Scholar 

  • Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1997) The crystal structures of substrate binding site mutants of manganese peroxidase. J Biol Chem 272:17574–17580

    CAS  Google Scholar 

  • Suzuki MR, Hunt CG, Houtman CJ, Dalebroux ZD, Hammel KE (2006) Fungal hydroquinones contribute to brown-rot of wood. Environ Microbiol 8:2214–2223

    CAS  Google Scholar 

  • Tadesse MH, D’Annibale A, Galli C, Gentili P, Sergi F (2008) An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates. Org Biomol Chem 6:868–878

    CAS  Google Scholar 

  • Tanaka H, Yoshida G, Baba Y, Matsumura K, Wasada H, Murata J, Agawa M, Itakura S, Enoki A (2007) Characterization of a hydroxyl-radical-producing glycoprotein and its presumptive genes from the white-rot basidiomycete Phanerochaete chrysosporium. J Biotechnol 128:500–511

    CAS  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    CAS  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72:169–183

    CAS  Google Scholar 

  • Uzcategui E, Johansson G, Ek B, Pettersson G (1991a) The 1,4-β-glucan glucanohydrolases from Phanerochaete chrysosporium. Re-assessment of their significance in cellulose degradation mechanisms. J Biotechnol 21:143–159

    CAS  Google Scholar 

  • Uzcategui E, Ruiz A, Montesino R, Johansson G, Pettersson G (1991b) The 1,4-β-glucan cellobiohydrolases from Phanerochaete chrysosporium. I. A system of synergistically acting enzymes homologous to Trichoderma reesei. J Biotechnol 19:271–285

    CAS  Google Scholar 

  • Vanden Wymelenberg A, Minges P, Sabat G, Martinez D, Aerts A, Salamov A, Grigoriev I, Shapiro H, Putnam N, Belinky P, Dosoretz C, Gaskell J, Kersten P, Cullen D (2006) Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet Biol 43:343–356

    CAS  Google Scholar 

  • Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11:278–285

    CAS  Google Scholar 

  • Vares T, Kalsi M, Hatakka A (1995) Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiata during solid-state fermentation of wheat straw. Appl Environ Microbiol 61:3515–3520

    CAS  Google Scholar 

  • Wang W, Gao PJ (2003) Function and mechanism of a low-molecular-weight peptide produced by Gloeophyllum trabeum in biodegradation of cellulose. J Biotechnol 101:119–130

    Google Scholar 

  • Wei DS, Houtman CJ, Kapich AN, Hunt CG, Cullen D, Hammel KE (2010) Laccase and its role in the production of extracellular reactive oxygen species during wood decay by the brown-rot basidiomycete Postia placenta. Appl Environ Microbiol. 76:2091–2097

    Google Scholar 

  • Widsten P, Kandelbauer A (2008) Laccase applications in the forest products industry: a review. Enzyme Microb Technol 42:293–307

    CAS  Google Scholar 

  • Yaver DS, Xu F, Golightly EJ, Brown KM, Brown SH, Rey MW, Schneider P, Halkier T, Mondorf K, Dalboge H (1996) Purification, characterization, molecular cloning, and expression of two laccase genes from the white-rot basidiomycete Trametes villosa. Appl Environ Microbiol 62:834–841

    CAS  Google Scholar 

  • Yelle DJ, Ralph J, Lu FC, Hammel KE (2008) Evidence for cleavage of lignin by a brown-rot basidiomycete. Environ Microbiol 10:1844–1849

    CAS  Google Scholar 

  • Yoon JJ, Cha CJ, Kim YS, Kim W (2008) Degradation of cellulose by the major endoglucanase produced from the brown-rot fungus Fomitopsis pinicola. Biotechnol Lett 30:1373–1378

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annele Hatakka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hatakka, A., Hammel, K.E. (2011). Fungal Biodegradation of Lignocelluloses. In: Hofrichter, M. (eds) Industrial Applications. The Mycota, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11458-8_15

Download citation

Publish with us

Policies and ethics