Skip to main content

Similarity Scores Based on Background Samples

  • Conference paper
Computer Vision – ACCV 2009 (ACCV 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5995))

Included in the following conference series:

Abstract

Evaluating the similarity of images and their descriptors by employing discriminative learners has proven itself to be an effective face recognition paradigm. In this paper we show how “background samples”, that is, examples which do not belong to any of the classes being learned, may provide a significant performance boost to such face recognition systems. In particular, we make the following contributions. First, we define and evaluate the “Two-Shot Similarity” (TSS) score as an extension to the recently proposed “One-Shot Similarity” (OSS) measure. Both these measures utilize background samples to facilitate better recognition rates. Second, we examine the ranking of images most similar to a query image and employ these as a descriptor for that image. Finally, we provide results underscoring the importance of proper face alignment in automatic face recognition systems. These contributions in concert allow us to obtain a success rate of 86.83% on the Labeled Faces in the Wild (LFW) benchmark, outperforming current state-of-the-art results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huang, G., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. UMASS, TR 07-49 (2007)

    Google Scholar 

  2. Taigman, Y., Wolf, L., Hassner, T.: Multiple one-shots for utilizing class label information. In: BMVC (2009)

    Google Scholar 

  3. Belongie, S., Malik, J., Puzicha, J.: Shape context: A new descriptor for shape matching and object recognition. In: NIPS (2001)

    Google Scholar 

  4. Zhang, H., Berg, A., Maire, M., Malik, J.: Svm-knn: Discriminative nearest neighbor classification for visual category recognition. In: CVPR (2006)

    Google Scholar 

  5. Bilenko, M., Basu, S., Mooney, R.: Integrating constraints and metric learning in semi-supervised clustering. In: ICML (2004)

    Google Scholar 

  6. Cristianini, N., Kandola, J., Elisseeff, A., Shawe-Taylor, J.: On kernel-target alignment. In: NIPS (2002)

    Google Scholar 

  7. Shental, N., Hertz, T., Weinshall, D., Pavel, M.: Adjustment learning and relevant component analysis. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 776–790. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin nearest neighbor classification. In: NIPS (2006)

    Google Scholar 

  9. Xing, E., Ng, A.Y., Jordan, M., Russell, S.: Distance metric learning, with application to clustering with side-information. In: NIPS (2003)

    Google Scholar 

  10. Wolf, L., Hassner, T., Taigman, Y.: Descriptor based methods in the wild. In: Faces in Real-Life Images Workshop in ECCV (2008)

    Google Scholar 

  11. Wolf, L., Hassner, T., Taigman, Y.: The one-shot similarity kernel. In: ICCV (2009)

    Google Scholar 

  12. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. PAMI 28(4), 594–611 (2006)

    Google Scholar 

  13. Fink, M.: Object classification from a single example utilizing class relevance pseudo-metrics. In: NIPS (2004)

    Google Scholar 

  14. Chapelle, O., Scholkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press, Cambridge (2006)

    Google Scholar 

  15. Joachims, T.: Transductive learning via spectral graph partitioning. In: International Conference on Machine Learning (ICML), pp. 290–297 (2003)

    Google Scholar 

  16. Quattoni, A., Collins, M., Darrell, T.: Transfer learning for image classification with sparse prototype representations. In: CVPR (June 2008)

    Google Scholar 

  17. Xing, E., Ng, A., Jordan, M., Russell, S.: Distance metric learning with application to clustering with side-information. In: NIPS, Cambridge, MA (2003)

    Google Scholar 

  18. Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning distance functions using equivalence relations. In: ICML (2003)

    Google Scholar 

  19. Liu, W., Hoi, S., Liu, J.: Output regularized metric learning with side information. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 358–371. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Chechik, G., Tishby, N.: Extracting relevant structures with side information. In: NIPS, pp. 857–864 (2002)

    Google Scholar 

  21. Fisher, R.: The use of multiple measurements in taxonomic problems. Annals Eugenics 7, 179–188 (1936)

    Google Scholar 

  22. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  23. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. Wiley, Chichester (2001)

    MATH  Google Scholar 

  24. Brand, M.: Fast low-rank modifications of the thin singular value decomposition. Linear Algebra and its Applications 415(1), 20–30 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Edelman, S.: Representation and recognition in vision. MIT Press, Cambridge (1999)

    Google Scholar 

  26. Bart, E., Ullman, S.: Single-example learning of novel classes using representation by similarity. In: British Machine Vision Conference (2005)

    Google Scholar 

  27. Nowak, E., Jurie, F.: Learning visual similarity measures for comparing never seen objects. In: CVPR (June 2007)

    Google Scholar 

  28. Huang, G., Jain, V., Learned-Miller, E.: Unsupervised joint alignment of complex images. In: IEEE International Conference on Computer Vision (2007)

    Google Scholar 

  29. Huang, G., Jones, M., Learned-Miller, E.: Lfw results using a combined nowak plus merl recognizer. In: Faces in Real-Life Images Workshop in ECCV (2008)

    Google Scholar 

  30. Ojala, T., Pietikainen, M., Harwood, D.: A comparative-study of texture measures with classification based on feature distributions. Pattern Recognition 29(1) (1996)

    Google Scholar 

  31. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neuroscience 2(11), 1019–1025 (1999)

    Article  Google Scholar 

  32. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  33. Pinto, N., DiCarlo, J., Cox, D.: How far can you get with a modern face recognition test set using only simple features? In: CVPR (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wolf, L., Hassner, T., Taigman, Y. (2010). Similarity Scores Based on Background Samples. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5995. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12304-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12304-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12303-0

  • Online ISBN: 978-3-642-12304-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics