Skip to main content

Categories for the Practising Physicist

  • Chapter
  • First Online:
New Structures for Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 813))

Abstract

In this chapter we survey some particular topics in category theory in a somewhat unconventional manner. Our main focus will be on monoidal categories, mostly symmetric ones, for which we propose a physical interpretation. Special attention is given to the category which has finite dimensional Hilbert spaces as objects, linear maps as morphisms, and the tensor product as its monoidal structure (FdHilb). We also provide a detailed discussion of the category which has sets as objects, relations as morphisms, and the cartesian product as its monoidal structure (Rel), and thirdly, categories with manifolds as objects and cobordisms between these as morphisms (2Cob). While sets, Hilbert spaces and manifolds do not share any non-trivial common structure, these three categories are in fact structurally very similar. Shared features are diagrammatic calculus, compact closed structure and particular kinds of internal comonoids which play an important role in each of them. The categories FdHilb and Rel moreover admit a categorical matrix calculus. Together these features guide us towards topological quantum field theories. We also discuss posetal categories, how group representations are in fact categorical constructs, and what strictification and coherence of monoidal categories is all about. In our attempt to complement the existing literature we omitted some very basic topics. For these we refer the reader to other available sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the light of the previous footnote, note here that this law applies to any reasonable notion of equality for processes.

  2. 2.

    Paper [20] provided a conceptual template for setting up the content of this paper. However, here we go in more detail and provide more examples.

  3. 3.

    Typically, “family” will mean a class rather than a set. While for many constructions the size of \(|\textbf{C}|\) is important, it will not play a key role in this paper.

  4. 4.

    In order to conceive Cat as a concrete category, the family of objects should be restricted to the so-called “small” categories i.e., categories for which the family of objects is a set.

  5. 5.

    The first time the 1st author heard about categories was in a Philosophy of Science course, given by a biologist specialised in population dynamics, who discussed the importance of category theory in the influential work of Robert Rosen [59].

  6. 6.

    Note that this operation on morphisms is a typed variant of the notion of monoid.

  7. 7.

    This \(90^\circ\) rotation is merely a consequence of our convention to read pictures from bottom-to-top. Other authors obey different conventions e.g. top-to-bottom or left-to-right.

  8. 8.

    Naturality is one of the most important concepts of formal category theory. In fact, in the founding paper [33] Eilenberg and MacLane argue that their main motivation for introducing the notion of a category is to introduce the notion of a functor, and that their main motivation for introducing the notion of a functor is to introduce the notion of a natural transformation.

  9. 9.

    There is no particular reason why we ask for biproducts to be specified while in the case of Cartesian categories we only required existence. This is a matter of taste, whether one prefers “being Cartesian” or “being a biproduct category” to be conceived as a “property a category possesses” or “some extra structure it comes with”. There are different “schools” of category theory which have strong arguments for either of these. Each of these have their virtues and therefore we decided to give an example of both.

References

  1. Abramsky, S.: No-Cloning in categorical quantum mechanics. In: Mackie, I., Gay, S. (eds.) Semantic Techniques for Quantum Computation. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  2. Abramsky, S., Coecke, B.: A Categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LiCS’04), IEEE Computer Science Press, 2004. arXiv:quant-ph/0402130 An updated & improved version appeared under the title Categorical quantum mechanics. In: Handbook of quantum logic and quantum structures, Elsevier. arXiv:0808.1023

    Google Scholar 

  3. Abramsky, S., Coecke, B.: Abstract physical traces. Theor. Appl. Categories 14, 111–124 (2006). http://www.tac.mta.ca/tac/volumes/14/6/14–06abs.html

    MathSciNet  Google Scholar 

  4. Abramsky, S., Tzevelekos, N.: Introduction to categories and categorical logic. In: Coecke, B. (ed.) New Structures for Physics. Springer Lecture Notes in Physics, New York (2009)

    Google Scholar 

  5. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories – The Joy of Cats. Wiley, New York (1990). Freely available from http://katmat.math.uni-bremen.de/acc/acc.pdf

    MATH  Google Scholar 

  6. Asperti, A., Longo, G.: Categories, types, and Structures. An Introduction to Category theory for the Working Computer Scientist. MIT Press, New York (1991)

    MATH  Google Scholar 

  7. Barnum, H., Caves, C.M., Fuchs, C.A., Jozsa, R., Schumacher, B.: Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett. 76, 2818–2821 (1996). arXiv:quant-ph/9511010

    Article  ADS  Google Scholar 

  8. Baez, J.C.: This Week’s Finds in Mathematical Physics, 1993–2008. http://math.ucr.edu/home/baez/TWF.html

  9. Baez, J.C.: Quantum quandaries: A category-theoretic perspective. In French, S. et al. (eds.) Structural Foundations of Quantum Gravity. Oxford University Press, Oxford (2004). arXiv:quant-ph/0404040

    Google Scholar 

  10. Baez, J.C., Dolan, J.: Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36, 60736105 (1995). arXiv:q-alg/9503002

    MathSciNet  Google Scholar 

  11. Baez, J.C., Corfield, D., Schreiber, U.: The n-category cafe. Group blog. http://golem.ph.utexas.edu/category/

  12. Baez, J.C., Stay, M.: Physics, topology, logic and computation: A Rosetta Stone. In: Coecke, B. (ed.) New Structures for Physics. Springer Lecture Notes in Physics, New York (2009). arXiv: 0903.0340

    Google Scholar 

  13. Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, New York (1985). Republished in Reprints in Theory and Applications of Categories, No. 12, 1–287, 2005. http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html

    MATH  Google Scholar 

  14. Bénabou, J.: Categories avec multiplication. Comptes Rendus des Séances de l’Académie des Sciences Paris 256, 1887–1890 (1963)

    MATH  Google Scholar 

  15. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)

    Article  Google Scholar 

  16. Borceux, F., Stubbe, I.: Short introduction to enriched categories. In: Coecke, B., Moore, D.J., Wilce, A. (eds.) Current Research in Operational Quantum Logic: Algebras, Categories and Languages, pp. 167–194. Fundamental Theories of Physics vol. 111. Springer, New York (2000)

    Google Scholar 

  17. Brown, R.: Topology: A Geometric Account of General Topology, Homotopy Types, and the Fundamental Groupoid. Halsted Press, New York (1988)

    MATH  Google Scholar 

  18. Cheng, E., Willerton, S.: The Catsters. YouTube videos. www.youtube.com/user/TheCatsters

  19. Catsters: Group objects and Hopf algebras. See [18]

    Google Scholar 

  20. Coecke, B.: Kindergarten quantum mechanics. In: Khrennikov, A. (ed.) Quantum Theory: Reconsiderations of the Foundations III, pp. 81–98. AIP Press, New York (2005). arXiv:quant-ph/0510032v1

    Google Scholar 

  21. Coecke, B.: Introducing categories to the practicing physicist. In: What is Category Theory? pp. 45–74. Advanced Studies in Mathematics and Logic 30, Polimetrica Publishing, Italy (2006). arXiv:0808.1032

    Google Scholar 

  22. Coecke, B.: De-linearizing linearity: Projective quantum axiomatics from strong compact closure. Elect. Notes Theor. Comput. Sci. 170, 47–72 (2007). arXiv:quant-ph/0506134

    Google Scholar 

  23. Coecke, B., Duncan, R.: Interacting quantum observables. In: Proceedings of the 35th International Colloquium on Automata, Languages and Programming, pp. 298–310, Lecture Notes in Computer Science, vol. 5126, Springer, New York (2008). An extended version is available under the title Interacting Quantum Observables: Categorical Algebra and Diagrammatics at arXiv:0906.4725

    Google Scholar 

  24. Coecke, B., Edwards, B., Spekkens, R.W.: The group-theoretic origin of non-locality for qubits. Oxford University Computing Laboratory Research Report PRG-RR-09–04 (2009) http://web.comlab.ox.ac.uk/publications/publication3026-abstract.html

  25. Coecke, B., Paquette, E.O.: POVMs and Nairmarks theorem without sums, Electronic Notes in Theoretical Computer Science (to appear) (2008). arXiv:quant-ph/0608072

    Google Scholar 

  26. Coecke, B., Paquette, E.O., Pavlovic, D.: Classical and quantum structuralism. In: Mackie, I., Gay, S. (eds.) Semantic Techniques for Quantum Computation. To appear, Cambridge University Press, Cambridge (2008). arXiv:0904.1997

    Google Scholar 

  27. Coecke, B., Pavlovic, D.: Quantum measurements without sums. In: Chen, G., Kauffman, L., Lamonaco, S. (eds.) Mathematics of Quantum Computing and Technology, pp. 567–604. Taylor and Francis, Abington (2008). arXiv:quant-ph/0608035

    Google Scholar 

  28. Coecke, B., Pavlovic, D., Vicary, J.: A new description of orthogonal bases. Preprint (2008). arXiv:0810.0812

    Google Scholar 

  29. Deligne, P.: Catégories tannakiennes. In: The Grothendieck Festschrift Volume II, Progress in Mathematics 87, pp. 111–196. Birkhäuser, Boston (1990)

    Google Scholar 

  30. Dieks, D.G.B.J.: Communication by EPR devices. Phys. Lett. A 92, 271–272 (1982)

    Article  ADS  Google Scholar 

  31. Dirac, P.A.M.: The Principles of Quantum Mechanics, 3rd edn. Oxford University Press, Oxford (1947)

    MATH  Google Scholar 

  32. Doering, A., Isham, C.: ‘What is a thing?’: Topos theory in the foundations of physics. In: Coecke, B. (ed.) New Structures for Physics. Springer Lecture Notes in Physics, New York (2009). arXiv:0803.0417

    Google Scholar 

  33. Eilenberg, S., MacLane, S.: General theory of natural equivalences. Trans. Am. Math. Soc. 58, 231–294 (1945)

    MathSciNet  MATH  Google Scholar 

  34. Finkelstein, D.R., Jauch, J.M., Schiminovich, D., Speiser, D.: Foundations of quaternion quantum mechanics. J. Math. Phys. 3, 207–220 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  35. Freyd, P., Yetter, D.: Braided compact closed categories with applications to lowdimensional topology. Adv. Math. 77, 156–182 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Houston, R.: Finite products are biproducts in a compact closed category. J. Pure Appl. Algebra 212, 394–400 (2008). arXiv:math/0604542

    Article  MathSciNet  MATH  Google Scholar 

  38. Joyal, A., Street, R.: The geometry of tensor calculus I. Adv. Math. 88, 55–112 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Proc. Cambridge Philoso. Soc. 119, 447–468 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kauffman, L.H.: Teleportation topology. Optics Spectroscopy 99, 227–232 (2005). arXiv:quant-ph/0407224

    Article  ADS  Google Scholar 

  41. Kelly, G.M., Laplaza, M.L.: Coherence for compact closed categories. J. Pure Appl. Algebra 19, 193–213 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kock, J.: Frobenius Algebras and 2D Topological Quantum Field Theories, London Mathematical Society, in Student Texts 59 (2004)

    Google Scholar 

  43. Lack, S.: Composing PROPs. Theory Appl. Categories 13, 147–163 (2004)

    MathSciNet  MATH  Google Scholar 

  44. Lambek, J., Scott, P.J.: Higher Order Categorical Logic. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  45. Lauda, A.D., Pfeiffer, H.: State sum construction of two-dimensional open-closed Topological Quantum Field Theories. J. Knot Theory Ramifications 16, 1121–1163 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lawvere, F.W.: Metric spaces, generalized logic, and closed categories. Rendiconti del Seminario Matematico e Fisico di Milano 43, 135–166 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lawvere, F.W., Schanuel, S.H.: Conceptual Mathematics. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  48. Leinster, T.: Higher Operads, Higher Categories, London Mathematical Society Lecture Note Series 298, Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  49. Martin, K., Panangaden, P.: Domain theory and general relativity. In: Coecke, B. (ed.) New Structures for Physics. Springer Lecture Notes in Physics, New York (2009)

    Google Scholar 

  50. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, New York (2000)

    Google Scholar 

  51. Muirhead, R.F.: Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters. Proc. Edinburgh Math. Soc. 21, 144157 (1903)

    Google Scholar 

  52. Nielsen, M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436–439 (1999)

    Article  ADS  Google Scholar 

  53. Morrison, S.E.: A diagrammatic category for the representation theory of Uq(sln). PhD thesis, University of California at Berkeley, Berkeley (2007)

    Google Scholar 

  54. Pati, A.K., Braunstein, S.L.: Impossibility of deleting an unknown quantum state. Nature 404, 164–165 (2000). arXiv:quant-ph/9911090

    ADS  Google Scholar 

  55. Penrose, R.: Applications of negative dimensional tensors. In: Combinatorial Mathematics and Its Applications, pp. 221–244, Academic Press, New York (1971)

    Google Scholar 

  56. Penrose, R.: Techniques of differential topology in relativity, Society for Industrial and Applied Mathematics (1972)

    Google Scholar 

  57. Piron, C.: Foundations of Quantum Physics. W. A. Benjamin, Reading (1976)

    MATH  Google Scholar 

  58. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12, 23–41 (1965)

    Article  MATH  Google Scholar 

  59. Rosen, R.: Anticipatory Systems: Philosophical, Mathematical and Methodological Foundations. Pergamon Press, New York (1985)

    MATH  Google Scholar 

  60. Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Cambridge Philosophical Soc. 31, 555–563 (1935); 32, 446–451 (1936)

    Article  ADS  Google Scholar 

  61. Seely, R.A.G.: Linear logic, *-autonomous categories and cofree algebras. Contemporary Math. 92, 371–382 (1998)

    Article  MathSciNet  Google Scholar 

  62. Selinger, P.: Dagger compact closed categories and completely positive maps. Electro. Notes Theor. Comput. Sci. 170, 139–163 (2007)

    Article  MathSciNet  Google Scholar 

  63. Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke, B. (ed.) New Structures for Physics. Springer Lecture Notes in Physics, New York (2009)

    Google Scholar 

  64. Sorkin, R.: Spacetime and causal sets, In: J. D’Olivo (ed.) Relativity and Gravitation: Classical and Quantum. World Scientific, Singapore (1991)

    Google Scholar 

  65. Street, R.: Quantum Groups: A Path to Current Algebra. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  66. Turaev, V.G.: Axioms for topological quantum field theories. In: Annales de la faculté des sciences de Toulouse 6e série 3, 135–152 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  67. Vicary, J.: A categorical framework for the quantum harmonic oscillator. Int. J. Theor. Phys. (to appear) (2008). arXiv: quant-ph/0706.0711

    Google Scholar 

  68. Yetter, D.N.: Functorial Knot Theory. Categories of Tangles, Coherence, Categorical Deformations, and Topological Invariants, World Scientific, Singapore (2001)

    MATH  Google Scholar 

  69. Wootters, W., Zurek, W.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We very much appreciated the feedback from the n-category cafe on a previous draft of this paper, by John Baez, Hendrik Boom, Dave Clarke, David Corfield and Aaron Lauda. We in particular thank Frank Valckenborgh for proofreading the final version.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Coecke or É.O. Paquette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-VerlagBerlin Heidelberg

About this chapter

Cite this chapter

Coecke, B., Paquette, É. (2010). Categories for the Practising Physicist. In: Coecke, B. (eds) New Structures for Physics. Lecture Notes in Physics, vol 813. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12821-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12821-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12820-2

  • Online ISBN: 978-3-642-12821-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics