Skip to main content

Part of the book series: IFMBE Proceedings ((IFMBE,volume 29))

Abstract

Analysis of dynamic videofluoroscopic can provide spine kinematic data with an acceptable low X-ray dose. Estimation of the kinematics relies on accurate recognition of vertebrae positions and rotations on each radiological frame. In previous works we presented a procedure for automatic tracking of vertebra motion by smoothed gradient operators and template matching in fluoroscopic image sequences. A limitation to the accurate estimation of the kinematics by automatic tracking of vertebrae motion, independently by the specific methodology employed (e.g. manual marking, corner or edge automatic detection, etc.), is mainly due to noise: low-dose X-ray image sequences exhibit severe signal-dependent noise that should be reduced, while preserving anatomical edges and structures. Noise in low-dose X-ray images originates from various sources, however quantum noise is by far the more dominant noise in low-dose X-ray images and other sources can be neglected. Signal degraded by quantum noise is commonly modeled by a Poisson distribution, but it is possible to approximate it as additive zero-mean Gaussian noise with signal-dependent variance. In this work we propose a digital spatial filter for reducing noise in low-dose X-ray images. The proposed filter is based on averaging of only similar pixels (whose grey level is contained within ±3σ) instead of spatial averaging of all neighbouring pixels. The effectiveness of the filter performance was evaluated by fluoroscopic image sequence processing, comparing the results of the automatic vertebra tracking on filtered and unfiltered images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 International Federation for Medical and Biological Engineering

About this paper

Cite this paper

Cerciello, T. et al. (2010). Noise reduction in fluoroscopic image sequences for joint kinematics analysis. In: Bamidis, P.D., Pallikarakis, N. (eds) XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010. IFMBE Proceedings, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13039-7_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13039-7_81

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13038-0

  • Online ISBN: 978-3-642-13039-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics