Skip to main content

Understanding TSP Difficulty by Learning from Evolved Instances

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6073))

Abstract

Whether the goal is performance prediction, or insights into the relationships between algorithm performance and instance characteristics, a comprehensive set of meta-data from which relationships can be learned is needed. This paper provides a methodology to determine if the meta-data is sufficient, and demonstrates the critical role played by instance generation methods. Instances of the Travelling Salesman Problem (TSP) are evolved using an evolutionary algorithm to produce distinct classes of instances that are intentionally easy or hard for certain algorithms. A comprehensive set of features is used to characterise instances of the TSP, and the impact of these features on difficulty for each algorithm is analysed. Finally, performance predictions are achieved with high accuracy on unseen instances for predicting search effort as well as identifying the algorithm likely to perform best.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Macready, W., Wolpert, D.: What makes an optimization problem hard. Complexity 5, 40–46 (1996)

    MathSciNet  Google Scholar 

  2. Nudelman, E., Leyton-Brown, K., Hoos, H., Devkar, A., Shoham, Y.: Understanding random SAT: Beyond the clauses-to-variables ratio. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 438–452. Springer, Heidelberg (2004)

    Google Scholar 

  3. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla-07: The design and analysis of an algorithm portfolio for SAT. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 712–727. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Cho, Y., Moore, J., Hill, R., Reilly, C.: Exploiting empirical knowledge for bi-dimensional knapsack problem heuristics. International Journal of Industrial and Systems Engineering 3(5), 530–548 (2008)

    Article  Google Scholar 

  5. Hall, N., Posner, M.: Performance Prediction and Preselection for Optimization and Heuristic Solution Procedures. Operations Research 55(4), 703 (2007)

    Article  MATH  Google Scholar 

  6. Smith-Miles, K.: Towards insightful algorithm selection for optimisation using meta-learning concepts. In: IEEE International Joint Conference on Neural Networks, IJCNN 2008. IEEE World Congress on Computational Intelligence, pp. 4118–4124 (2008)

    Google Scholar 

  7. Smith-Miles, K., James, R., Giffin, J., Tu, Y.: Understanding the Relationship between Scheduling Problem Structure and Heuristic Performance using Knowledge Discovery, LNCS. Springer, Heidelberg (in press, 2009)

    Google Scholar 

  8. Rice, J.: The Algorithm Selection Problem. Advances in computers 65 (1976)

    Google Scholar 

  9. van Hemert, J.: Evolving combinatorial problem instances that are difficult to solve. Evolutionary Computation 14(4), 433–462 (2006)

    Article  Google Scholar 

  10. Gras, R.: How efficient are genetic algorithms to solve high epistasis deceptive problems? In: IEEE Congress on Evolutionary Computation, CEC 2008. IEEE World Congress on Computational Intelligence, pp. 242–249 (2008)

    Google Scholar 

  11. Locatelli, M., Wood, G.: Objective Function Features Providing Barriers to Rapid Global Optimization. Journal of Global Optimization 31(4), 549–565 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Xin, B., Chen, J., Pan, F.: Problem difficulty analysis for particle swarm optimization: deception and modality. In: Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pp. 623–630 (2009)

    Google Scholar 

  13. Bachelet, V.: Métaheuristiques parallèles hybrides: application au problème d’affectation quadratique. PhD thesis, Universite des Sciences et Technologies de Lille (1999)

    Google Scholar 

  14. Reeves, C.: Landscapes, operators and heuristic search. Annals of Operations Research 86, 473–490 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schiavinotto, T., Stützle, T.: A review of metrics on permutations for search landscape analysis. Comput. Oper. Res. 34(10), 3143–3153 (2007)

    Article  MATH  Google Scholar 

  16. Smith-Miles, K.A., Lopes, L.B.: Measuring Combinatorial Optimization Problem Difficulty for Algorithm Selection. Annals of Mathematics and Artificial Intelligence (under review, 2009)

    Google Scholar 

  17. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by landmarking various learning algorithms. In: Proceedings of the Seventeenth International Conference on Machine Learning table of contents, pp. 743–750. Morgan Kaufmann Publishers Inc., San Francisco (2000)

    Google Scholar 

  18. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-heuristics: An emerging direction in modern search technology. International Series in Operations Research and Management Science, pp. 457–474 (2003)

    Google Scholar 

  19. Battiti, R.: Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on neural networks 5(4), 537–550 (1994)

    Article  Google Scholar 

  20. Vasconcelos, N.: Feature selection by maximum marginal diversity: optimality and implications for visual recognition. In: Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1 (2003)

    Google Scholar 

  21. Cheeseman, P., Kanefsky, B., Taylor, W.: Where the really hard problems are. In: Proceedings of the 12th IJCAI, pp. 331–337 (1991)

    Google Scholar 

  22. Ridge, E., Kudenko, D.: An Analysis of Problem Difficulty for a Class of Optimisation Heuristics. In: Cotta, C., van Hemert, J. (eds.) EvoCOP 2007. LNCS, vol. 4446, pp. 198–209. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Zhang, W., Korf, R.: A study of complexity transitions on the asymmetric traveling salesman problem. Artificial Intelligence 81(1-2), 223–239 (1996)

    Article  MathSciNet  Google Scholar 

  24. Zhang, W.: Phase transitions and backbones of the asymmetric traveling salesman problem. Journal of Artificial Intelligence Research 21, 471–497 (2004)

    MATH  MathSciNet  Google Scholar 

  25. Gent, I., Walsh, T.: The TSP phase transition. Artificial Intelligence 88(1-2), 349–358 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  26. Thiebaux, S., Slaney, J., Kilby, P.: Estimating the hardness of optimisation. In: ECAI, pp. 123–130 (2000)

    Google Scholar 

  27. Gaertner, D., Clark, K.: On optimal parameters for ant colony optimization algorithms. In: Proceedings of the 2005 International Conference on Artificial Intelligence, Citeseer, vol. 1, pp. 83–89 (2005)

    Google Scholar 

  28. Stadler, P., Schnabl, W.: The landscape of the traveling salesman problem. Phys. Lett. A 161(4), 337–344 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kilby, P., Slaney, J., Walsh, T.: The backbone of the travelling salesperson. In: International Joint Conference on Artificial Intelligence, vol. 19, p. 175 (2005)

    Google Scholar 

  30. Lin, S., Kernighan, B.: An efficient heuristic algorithm for the traveling salesman problem. Operations Research 21(2) (1973)

    Google Scholar 

  31. van Hemert, J.: Property analysis of symmetric travelling salesman problem instances acquired through evolution. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp. 122–131. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  32. van Hemert, J., Urquhart, N.: Phase transition properties of clustered travelling salesman problem instances generated with evolutionary computation. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 151–160. Springer, Heidelberg (2004)

    Google Scholar 

  33. van Hemert, J.: Property analysis of symmetric travelling salesman problem instances acquired through evolution. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp. 122–131. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  34. Kratica, J., Ljubić, I., Tošic, D.: A genetic algorithm for the index selection problem. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 281–291. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  35. Lin, S., Kernighan, B.: An effective heuristic algorithm for the traveling salesman problem. Operations Research 21, 498–516 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  36. Applegate, D., Cook, W., Rohe, A.: Chained lin-kernighan for large travelling salesman problems (2000), http://www.citeseer.com/applegate99chained.html

  37. Johnson, D., McGeoch, L.: The traveling salesman problem: a case study. In: Aarts, E., Lenstra, J. (eds.) Local Search in Combinatorial Optimization, pp. 215–310. John Wiley & Sons, Inc., Chichester (1997)

    Google Scholar 

  38. Sander, J., Ester, M., Kriegel, H., Xu, X.: Density-based clustering in spatial databases: The algorithm gdbscan and its applications. Data Mining and Knowledge Discovery 2(2), 169–194 (1998)

    Article  Google Scholar 

  39. Kohonen, T.: Self-organization maps. Proc. IEEE 78, 1464–1480 (1990)

    Article  Google Scholar 

  40. SOMine, V.: Enterprise Edition Version 3.0, Eudaptics Software Gmbh (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smith-Miles, K., van Hemert, J., Lim, X.Y. (2010). Understanding TSP Difficulty by Learning from Evolved Instances. In: Blum, C., Battiti, R. (eds) Learning and Intelligent Optimization. LION 2010. Lecture Notes in Computer Science, vol 6073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13800-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13800-3_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13799-0

  • Online ISBN: 978-3-642-13800-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics