Skip to main content

Organo-Mineral–Enzyme Interaction and Soil Enzyme Activity

  • Chapter
  • First Online:
Soil Enzymology

Part of the book series: Soil Biology ((SOILBIOL,volume 22))

Abstract

Although we have come to know a great deal about the structure and function of enzymes for biomedical and industrial applications, much about the “real” properties of extracellular enzymes in the soil environment remains unknown due to their complex associations with soil organic matter (OM) and minerals. Microbial and enzymatic activity, nutrient availability to plants, and the very existence of OM in soils may be attributed to the degree to which extracellular enzyme activity is inhibited by adsorption to, competitive interaction with, and occlusion within the structures of soil minerals and natural OM. This chapter outlines the broad range of enzyme–organo-mineral interactions that occur in soils and the evolution of our understanding of the mechanisms behind their varied affects on soil enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn MY, Martínez CE, Archibald DD, Zimmerman AR, Bollag J-M, Dec J (2006) Transformation of catechol in the presence of a laccase and birnessite. Soil Biol Biochem 38:1015–1020

    Article  CAS  Google Scholar 

  • Ahn MY, Zimmerman AR, Martinez CE, Archibald DD, Bollag JM, Dec J (2007) Characteristics of Trametes villosa laccase adsorbed on aluminum hydroxide. Enzyme Microb Technol 41:141–148

    Article  CAS  Google Scholar 

  • Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944

    Article  CAS  Google Scholar 

  • Allison SD (2006) Soil minerals and humic acids alter enzyme stability: implications for ecosystem processes. Biogeochem 81:361–373

    Article  CAS  Google Scholar 

  • Amy PS, Caldwell BA, Soeldner AH, Morita RY, Albright LJ (1987) Microbial activity and ultrastructure of mineral-based marine snow from Howe Sound, British-Columbia. Can J Fish Aquat Sci 44:1135–1142

    Article  Google Scholar 

  • Arai T, Norde W (1990) The behavior of some model proteins at solid-liquid interfaces 1. Adsorption from single protein solutions. Colloids Surf 51:1–15

    Article  CAS  Google Scholar 

  • Baldock JA, Skjemstad JO (2000) Role of soil matrix and minerals in protecting natural organic materials against biological attack. Org Geochem 31:697–710

    Article  CAS  Google Scholar 

  • Baron MH, Revault M, Servagent-Noinville S, Abadie J, Quiquampoix H (1999) Chymotrypsin adsorption on montmorillonite: enzymatic activity and kinetic FTIR structural analysis. J Colloid Interf Sci 214:319–332

    Article  CAS  Google Scholar 

  • Barral S, Villa-Garcia MA, Rendueles M, Diaz M (2008) Interactions between whey proteins and kaolinite surfaces. Acta Mater 56:2784–2790

    Article  CAS  Google Scholar 

  • Boavida MJ, Wetzel RG (1998) Inhibition of phosphatase activity by dissolved humic substances and hydrolytic reactivation by natural ultraviolet light. Freshw Biol 40:285–293

    Article  CAS  Google Scholar 

  • Borghetti C, Gioacchini P, Marzadori C, Gessa C (2003) Activity and stability of urease-hydroxyapatite and urease-hydroxyapatite-humic acid complexes. Biol Fertil Soils 38:96–101

    Article  CAS  Google Scholar 

  • Boyd SA, Mortland M (1990) Enzyme interactions with clays and clay-organic matter complexes. In: Stotzky G, Bollag J-M (eds) Soil biochemistry, vol 6. Marcel Dekker, New York, pp 1–28

    Google Scholar 

  • Burns RG (1982) Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biol Biochem 14:423–427

    Article  CAS  Google Scholar 

  • Butler JHA, Ladd JN (1969) The effect of methylation of humic acids on their influence of proteolytic enzyme activity. Aust J Soil Res 7:263–268

    Article  CAS  Google Scholar 

  • Butler JHA, Ladd JN (1971) Importance of the molecular weight of humic and fulvic acids in determining their effects on protease activity. Soil Biol Biochem 3:249–257

    Article  CAS  Google Scholar 

  • Calamai L, Lozzi I, Stotzky G, Fusi P, Ristori GG (2000) Interaction of catalase with montmorillonite homoionic to cations with different hydrophobicity: effect on enzymatic activity and microbial utilization. Soil Biol Biochem 32:815–823

    Article  CAS  Google Scholar 

  • Canas AI, Alcalde M, Plou F, Martinez MJ, Martinez AT, Camarero S (2007) Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil. Environ Sci Technol 41:2964–2971

    Article  PubMed  CAS  Google Scholar 

  • Ceccanti B, Nannipieri P, Cervelli S, Sequi P (1978) Fractionation of humus-urease complexes. Soil Biol Biochem 10:39–45

    Article  CAS  Google Scholar 

  • Claus H, Filip Z (1988) Behavior of phenoloxidases in the presence of clays and other soil-related adsorbents. Appl Microbiol Biotechnol 28:506–511

    Article  CAS  Google Scholar 

  • Criquet S, Farnet AM, Tagger S, Le Petit J (2000) Annual variations of phenoloxidase activities in an evergreen oak litter: influence of certain biotic and abiotic factors. Soil Biol Biochem 32:1505–1513

    Article  CAS  Google Scholar 

  • Curry KJ, Bennett RH, Mayer LM, Curry A, Abril M, Biesiot PM, Hulbert MH (2007) Direct visualization of clay microfabric signatures driving organic matter preservation in fine-grained sediment. Geochim Cosmochim Acta 71:1709–1720

    Article  CAS  Google Scholar 

  • De Cristofaro A, Violante A (2001) Effect of hydroxy-aluminium species on the sorption and interlayering of albumin onto montmorillonite. Appl Clay Sci 19:59–67

    Article  Google Scholar 

  • Dick WA, Tabatabai MA (1987) Kinetics and activities of phosphatase-clay complexes. Soil Sci 143:5–15

    Article  CAS  Google Scholar 

  • Dilly O, Nannipieri P (2001) Response of ATP content, respiration rate and enzyme activities in an arable and a forest soil to nutrient additions. Biol Fertil Soils 34:64–72

    Article  CAS  Google Scholar 

  • Ding X, Henrichs SM (2002) Adsorption and desorption of proteins and polyamino acids by clay minerals and marine sediments. Mar Chem 77:225–237

    Article  CAS  Google Scholar 

  • Durand G (1963) Microbiologie des sols – sur la degradation des bases puriques et pyrimidiques dans le sol – fixation de ces composes par les argiles – etude en fonction du pH et de la concentration. C R Hebd Seances Acad Sci 256:4126

    CAS  Google Scholar 

  • Ensminger LE, Gieseking JE (1939) The adsorption of proteins by montmorillonitic clays. Soil Sci 48:467–473

    Article  Google Scholar 

  • Ensminger LE, Gieseking JE (1941) The absorption of proteins by montmorillonitic clays and its effect on base-exchange capacity. Soil Sci 51:125–132

    Article  CAS  Google Scholar 

  • Ensminger LE, Gieseking JE (1942) Resistance of clay-adsorbed proteins to proteolytic hydrolysis. Soil Sci 53:205–209

    Article  CAS  Google Scholar 

  • Estermann EF, McLaren AD (1959) Stimulation of bacterial proteolysis by adsorbents. J Soil Sci 10:64–78

    Article  CAS  Google Scholar 

  • Fan YX, Ju M, Zhou JM, Tsou CL (1996) Activation of chicken liver dihydrofolate reductase by urea and guanidine hydrochloride is accompanied by conformational change at the active site. Biochem J 315:97–102

    PubMed  CAS  Google Scholar 

  • Freeman C, Ostle NJ, Fenner N, Kang H (2004) A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biol Biochem 36:1663–1667

    Article  CAS  Google Scholar 

  • Fusi P, Ristori GG, Calamai L, Stotzky G (1989) Adsorption and binding of protein on “clean” (homoionic) and “dirty” (coated with Fe oxyhydroxides) montmorillonite, illite and kaolinite. Soil Biol Biochem 21:911–920

    Article  CAS  Google Scholar 

  • Garwood GA, Mortland MM, Pinnavaia TJ (1983) Immobilization of glucose-oxidase on montmorillonite clay – hydrophobic and ionic modes of binding. J Mol Catal 22:153–163

    Article  CAS  Google Scholar 

  • Giacomelli CE, Norde W (2001) The adsorption-desorption cycle: reversibility of the BSA-silica system. J Colloid Interface Sci 233:234–240

    Article  PubMed  CAS  Google Scholar 

  • Gianfreda L, Rao MA, Violante A (1991) Invertase (beta-fructosidase) – effects of montmorillonite, Al-hydroxide and Al(OH)X-montmorillonite complex on activity and kinetic-properties. Soil Biol Biochem 23:581–587

    Article  CAS  Google Scholar 

  • Gianfreda L, Rao MA, Violante A (1992) Adsorption, activity and kinetic-properties of urease on montmorillonite, aluminum hydroxide and Al(OH)X-montmorillonite complexes. Soil Biol Biochem 24:51–58

    Article  CAS  Google Scholar 

  • Gianfreda L, Bollag JM (1994) Effect of soils on the behavior of immobilized enzymes. Soil Sci Soc Am J 58:1672–1681

    Article  CAS  Google Scholar 

  • Gianfreda L, Decristofaro A, Rao MA, Violante A (1995a) Kinetic-behavior of synthetic organo-complexes and organo-mineral-urease complexes. Soil Sci Soc Am J 59:811–815

    Article  CAS  Google Scholar 

  • Gianfreda L, Rao MA, Violante A (1995b) Formation and activity of urease-tannate complexes affected by aluminum, iron, and manganese. Soil Sci Soc Am J 59:805–810

    Article  CAS  Google Scholar 

  • Goldstein L, Katchalski-Katzir E (1976) Immobilized enzymes – a survey. In: Wingard LB Jr, Goldstein L, Katchalski-Katzir E (eds) Immobilized enzyme principles, vol 1. Academic, London, pp 1–22

    Google Scholar 

  • Grego S, Dannibale A, Luna M, Badalucco L, Nannipieri P (1990) Multiple forms of synthetic pronase phenolic copolymers. Soil Biol Biochem 22:721–724

    Article  CAS  Google Scholar 

  • Griffin EG, Nelson JM (1916) The influence of certain substances on the activity of invertase. J Am Chem Soc 38:722–730

    Article  CAS  Google Scholar 

  • Haska G (1981) Activity of bacteriolytic enzymes adsorbed to clays. Microb Ecol 7:331–341

    Article  Google Scholar 

  • Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49:81–115

    Article  CAS  Google Scholar 

  • Hsu PH, Hatcher PG (2005) New evidence for covalent coupling of peptides to humic acids based on 2D NMR spectroscopy: a means for preservation. Geochim Cosmochim Acta 69:4521–4533

    Article  CAS  Google Scholar 

  • Huang QY, Liang W, Cai P (2005) Adsorption, desorption and activities of acid phosphatase on various colloidal particles from an Ultisol. Colloid Surf B 45:209–214

    Article  CAS  Google Scholar 

  • Hughes JD, Simpson GH (1978) Arylsulfatase-clay interactions. 2. Effect of kaolinite and montmorillonite on arylsulfatase activity. Aust J Soil Res 16:35–40

    Article  CAS  Google Scholar 

  • Jastrow JD, Miller RM (1997) Soil aggregate stabilization and carbon sequestration: feedbacks through organo-mineral associations. CRC, Boca Raton, FL

    Google Scholar 

  • Kaiser K, Guggenberger G (2000) The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org Geochem 31:711–725

    Article  CAS  Google Scholar 

  • Kennedy MJ, Pevear DR, Hill RJ (2002) Mineral surface control of organic carbon in black shale. Science 259:657–660

    Article  Google Scholar 

  • King GM, Klug MJ (1980) Sulfhydrolase activity in sediments of Wintergreen Lake, Kalamazoo-County, Michigan. Appl Environ Microbiol 39:950–956

    PubMed  CAS  Google Scholar 

  • King GM (1986) Characterization of beta-glucosidase activity in intertidal marine-sediments. Appl Environ Microbiol 51:373–380

    PubMed  CAS  Google Scholar 

  • Kunze C (1970) The effect of streptomycin and aromatic carbonic acid on the catalase activity in soil samples. Zentralbl Bakter Par 124:658–61

    CAS  Google Scholar 

  • Kunze C (1971) Modulation of catalase activity in soil samples with tannic, gallic and para hydroxybenzoic acids. Oecolog Plantar 6:197–202

    Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Ladd JN, Butler JHA (1969) Inhibition and stimulation of proteolytic enzyme activities by soil humic acids. Aust J Soil Res 7:253–261

    Article  CAS  Google Scholar 

  • Ladd JN (1972) Properties of proteolytic enzymes extracted from soil. Soil Biol Biochem 4:227–237

    Article  CAS  Google Scholar 

  • Ladd JN, Butler JHA (1975) Humus-enzyme systems and synthetic, organic polymer-enzyme analogs. In: Paul EA, McLaren AD (eds) Soil biochemistry, vol 4. Marcel dekker, New York, pp 143–194

    Google Scholar 

  • Leprince F, Quiquampoix H (1996) Extracellular enzyme activity in soil: effect of pH and ionic strength on the interaction with montmorillonite of two acid phosphatases secreted by the ectomycorrhizal fungus Hebeloma cylindrosporum. Eur J Soil Sci 47:511–522

    Article  CAS  Google Scholar 

  • Lozzi I, Calamai L, Fusi P, Bosetto M, Stotzky G (2001) Interaction of horseradish peroxidase with montmorillonite homoionic to Na+ and Ca2+: effects on enzymatic activity and microbial degradation. Soil Biol Biochem 33:1021–1028

    Article  CAS  Google Scholar 

  • Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber WJ Jr, Westall JC (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31:3341–3347

    Article  CAS  Google Scholar 

  • Makboul HE, Ottow JCG (1979a) Michaelis constant (Km) of acid phosphatase as affected by montmorillonite, illite, and kaolinite clay-minerals. Microb Ecol 5:207–213

    Article  CAS  Google Scholar 

  • Makboul HE, Ottow JCG (1979b) Alkaline-phosphatase activity and Michaelis constant in the presence of different clay-minerals. Soil Sci 128:129–135

    Article  CAS  Google Scholar 

  • Marzadori C, Gessa C, Ciurli S (1998a) Kinetic properties and stability of potato acid phosphatase immobilized on Ca-polygalacturonate. Biol Fertil Soils 27:97–103

    Article  CAS  Google Scholar 

  • Marzadori C, Miletti S, Gessa C, Ciurli S (1998b) Immobilization of jack bean urease on hydroxyapatite: urease immobilization in alkaline soils. Soil Biol Biochem 30:1485–1490

    Article  CAS  Google Scholar 

  • Mayaudon J, Sarkar JM (1974) Chromatography and purification of diphenol oxidases of soil. Soil Biol Biochem 6:275–285

    Article  CAS  Google Scholar 

  • Mayaudon J, Sarkar JM (1975) Laccases of polyporus versicolor in soil and litter. Soil Biol Biochem 7:31–34

    Article  CAS  Google Scholar 

  • Mayer LM (1994) Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chem Geol 114:347–363

    Article  CAS  Google Scholar 

  • Mayer LM (1999) Extent of coverage of mineral surfaces by organic matter in marine sediments. Geochim Cosmochim Acta 63:207–215

    Article  CAS  Google Scholar 

  • McLaren AD (1954) The adsorption and reactions of enzymes and proteins on kaolinite. J Phys Chem 58:129–137

    Article  CAS  Google Scholar 

  • McLaren AD, Estermann EF (1956) The adsorption and reactions of enzymes and proteins on kaolinite. 3. The isolation of enzyme-substrate complexes. Arch Biochem Biophys 61:158–173

    Article  PubMed  CAS  Google Scholar 

  • McLaren AD, Estermann EF (1957) Influence of pH on the activity of chymotrypsin at a solid-liquid interface. Arch Biochem Biophys 68:157–160

    Article  PubMed  CAS  Google Scholar 

  • McLaren AD, Packer L (1970) Some aspects of enzyme reactions in heterogeneous systems. Adv Enzymol Relat Areas Mol Biol 33:245–308

    PubMed  CAS  Google Scholar 

  • Meyer-Reil LA (1986) Measurement of hydrolytic activity and incorporation of dissolved organic substrates by microorganisms in marine-sediments. Mar Ecol Prog Ser 31:143–149

    Article  CAS  Google Scholar 

  • Morgan HW, Corke CT (1976) Adsorption, desorption, and activity of glucose oxidase on selected clay species. Can J Microbiol 22:684–693

    Article  PubMed  CAS  Google Scholar 

  • Mosbach K (1976) Introduction. In: Mosbach K (ed) Immobilized enzymes, vol 44. Academic, New York, pp 3–7

    Chapter  Google Scholar 

  • Naidja A, Huang PM (1996) Deamination of aspartic acid by aspartase-Ca-montmorillonite complex. J Mol Catal A: Chem 106:255–265

    Article  CAS  Google Scholar 

  • Naidja A, Huang PM, Bollag JM (1997) Activity of tyrosinase immobilized on hydroxyaluminum-montmorillonite complexes. J Mol Catal A: Chem 115:305–316

    Article  CAS  Google Scholar 

  • Naidja A, Huang PM, Bollag JM (2000) Enzyme-clay interactions and their impact on transformations of natural and anthropogenic organic compounds in soil. J Environ Qual 29:677–691

    Article  CAS  Google Scholar 

  • Naidja A, Liu C, Huang PM (2002) Formation of protein-birnessite complex: XRD, FTIR, and AFM analysis. J Colloid Interface Sci 251:46–56

    Article  PubMed  CAS  Google Scholar 

  • Nannipieri P, Muccini L, Ciardi C (1983) Microbial biomass and enzyme-activities - production and persistence. Soil Biol Biochem 15:679–685

    Article  CAS  Google Scholar 

  • Nannipieri P, Ceccanti B, Bianchi D (1988) Characterization of humus phosphatase complexes extracted from soil. Soil Biol Biochem 20:683–691

    Article  CAS  Google Scholar 

  • Nelson JM, Griffin EG (1916) Adsorption of invertase. J Am Chem Soc 38:1109–1115

    Article  CAS  Google Scholar 

  • Pflug W (1981) Inhibition of malate dehydrogenase by humic acids. Soil Biol Biochem 13:293–299

    Article  CAS  Google Scholar 

  • Pflug W (1982) Soil enzymes and clay-minerals. 2. Effect of clay-minerals on the activity of polysaccharide cleaving soil enzymes. Pflanz Bodelkunde Z 145:493–502

    Article  CAS  Google Scholar 

  • Pinck LA, Allison FE (1951) Resistance of a protein-montmorillonite complex to decomposition by soil microorganisms. Science 114:130–131

    Article  PubMed  CAS  Google Scholar 

  • Pinck LA, Dyal RS, Allison FE (1954) Protein-montmorillonite complexes, their preparation and the effects of soil microorganisms on their decomposition. Soil Sci 78:109–118

    Article  CAS  Google Scholar 

  • Quiquampoix H (1987a) A stepwise approach to the understanding of extracellular enzyme-activity in soil.1. Effect of electrostatic interactions on the conformation of a beta-d-glucosidase adsorbed on different mineral surfaces. Biochimie 69:753–763

    Article  PubMed  CAS  Google Scholar 

  • Quiquampoix H (1987b) A stepwise approach to the understanding of extracellular enzyme-activity in soil. 2. Competitive effects on the adsorption of a beta-d-glucosidase in mixed mineral or organo mineral systems. Biochimie 69:765–771

    Article  PubMed  CAS  Google Scholar 

  • Quiquampoix H, Servagent-Noinville S, Baron M-H (2002) Enzyme adsorption on soil mineral surfaces and consequences for the catalytic activity. In: Burns RG, Dick RP (eds) Enzymes in the environment. Marcel Dekker, New York, pp 285–306

    Google Scholar 

  • Quiquampoix H, Burns RG (2007) Interactions between proteins and soil mineral surfaces: environmental and health consequences. Elements 3:401–406

    Article  CAS  Google Scholar 

  • Rao MA, Gianfreda L, Palmiero F, Violante A (1996) Interactions of acid phosphatase with clays, organic molecules and organo-mineral complexes. Soil Sci 161:751–760

    Article  CAS  Google Scholar 

  • Rao MA, Violante A, Gianfreda L (2000) Interaction of acid phosphatase with clays, organic molecules and organo-mineral complexes: kinetics and stability. Soil Biol Biochem 32:1007–1014

    Article  CAS  Google Scholar 

  • Rego JV, Billen G, Fontigny A, Somville M (1985) Free and attached proteolytic activity in water environments. Mar Ecol Prog Ser 21:245–249

    Article  CAS  Google Scholar 

  • Renella G, Landi L, Valori F, Nannipieri P (2007) Microbial and hydrolase activity after release of low molecular weight organic compounds by a model root surface in a clayey and a sandy soil. Appl Soil Ecol 36:124–129

    Article  Google Scholar 

  • Rosas A, Mora MD, Jara AA, Lopez R, Rao MA, Gianfreda L (2008) Catalytic behaviour of acid phosphatase immobilized on natural supports in the presence of manganese or molybdenum. Geoderma 145:77–83

    Article  CAS  Google Scholar 

  • Ross DJ, McNeilly BA (1972) Some influences of different soils and clay minerals on the activity of glucose. Soil Biol Biochem 4:9–18

    Article  CAS  Google Scholar 

  • Rowell MJ, Ladd JN, Paul EA (1973) Enzymically active complexes of proteases and humic acid analogues. Soil Biol Biochem 5:699–703

    Article  CAS  Google Scholar 

  • Ruggiero P, Radogna VM (1988) Humic acids tyrosinase interactions as a model of soil humic enzyme complexes. Soil Biol Biochem 20:353–359

    Article  CAS  Google Scholar 

  • Sarkar JM, Burns RG (1983) Immobilization of beta-d-glucosidase and beta-d-glucosidase-polyphenolic complexes. Biotechnol Lett 5:619–624

    Article  CAS  Google Scholar 

  • Sarkar JM, Burns RG (1984) Synthesis and properties of beta-d-glucosidase phenolic copolymers as analogs of soil humic-Enzyme complexes. Soil Biol Biochem 16:619–625

    Article  CAS  Google Scholar 

  • Serban A, Nissenbaum A (1986) Humic-acid association with peroxidase and catalase. Soil Biol Biochem 18:41–44

    Article  CAS  Google Scholar 

  • Serefoglou E, Litina K, Gournis D, Kalogeris E, Tzialla AA, Pavlidis IV, Stamatis H, Maccallini E, Lubomska M, Rudolf P (2008) Smectite clays as solid supports for immobilization of beta-glucosidase: synthesis, characterization, and biochemical properties. Chem Mater 20:4106–4115

    Article  CAS  Google Scholar 

  • Servagent-Noinville S, Revault M, Quiquampoix H, Baron MH (2000) Conformational changes of bovine serum albumin induced by adsorption on different clay surfaces: FTIR analysis. J Colloid Interface Sci 221:273–283

    Article  PubMed  CAS  Google Scholar 

  • Shindo H, Watanabe D, Onaga T, Urakawa M, Nakahara O, Huang QY (2002) Adsorption, activity, and kinetics of acid phosphatase as influenced by selected oxides and clay minerals. Soil Sci Plant Nutr 48:763–767

    Article  CAS  Google Scholar 

  • Skujins J, Pukite A, McLaren AD (1974) Adsorption and activity of chitinase on kaolinite. Soil Biol Biochem 6:179–182

    Article  CAS  Google Scholar 

  • Skujins J (1976) Extracellular enzymes in soils. CRC Crit Rev Microbiol 4:383–421

    Article  PubMed  CAS  Google Scholar 

  • Skujins J (1978) History of abiontic soil enzyme research. In: Burns RG (ed) Soil enzymes. Academic, London, pp 1–49

    Google Scholar 

  • Skujins JJ, Estermann EF, McLaren AD (1959) Proteolytic activity of Bacillus subtilis in a clay protein paste system analogous to soil. Can J Microbiol 5:631–634

    Article  PubMed  CAS  Google Scholar 

  • Smith JR, Cicerone MT, Meuse CW (2009) Tertiary structure changes in albumin upon surface adsorption observed via fourier transform infrared spectroscopy. Langmuir 25:4571–4578

    Article  PubMed  CAS  Google Scholar 

  • Sorensen LH (1969) Fixation of enzyme protein in soil by the clay mineral montmorillonite. Experientia 25:20–21

    Article  PubMed  CAS  Google Scholar 

  • Srere PA, Ueda K (1976) Functional groups on enzymes suitable for binding matrices. In: Mosbach K (ed) Immobilized enzymes, vol 44. Academic, New York, pp 3–7

    Chapter  Google Scholar 

  • Staunton S, Quiquampoix H (1994) Adsorption and conformation of bovine serum-albumin on montmorillonite – modification of the balance between hydrophobic and electrostatic interactions by protein methylation and pH variation. J Colloid Interface Sci 166:89–94

    Article  CAS  Google Scholar 

  • Steen AD, Arnosti C, Ness L, Blough NV (2006) Electron paramagnetic resonance spectroscopy as a novel approach to measure macromolecule-surface interactions and activities of extracellular enzymes. Mar Chem 101:266–276

    Article  CAS  Google Scholar 

  • Tan WF, Koopal LK, Weng LP, van Riemsdijk WH, Norde W (2008) Humic acid protein complexation. Geochim Cosmochim Acta 72:2090–2099

    Article  CAS  Google Scholar 

  • Tietjen T, Wetzel RG (2003) Extracellular enzyme-clay mineral complexes: enzyme adsorption, alteration of enzyme activity, and protection from photodegradation. Aquat Ecol 37:331–339

    Article  CAS  Google Scholar 

  • Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389:170–173

    Article  CAS  Google Scholar 

  • Van Bodegom PM, Broekman R, Van Dijk J, Bakker C, Aerts R (2005) Ferrous iron stimulates phenol oxidase activity and organic matter decomposition in waterlogged wetlands. Biogeochem 76:69–83

    Article  CAS  Google Scholar 

  • Vuorinen AH, Saharinen MH (1996) Effects of soil organic matter extracted from soil on acid phosphomonoesterase. Soil Biol Biochem 28:1477–1481

    Article  CAS  Google Scholar 

  • Zang X, van Heemst JDH, Dria KJ, Hatcher PG (2000) Encapsulation of protein in humic acid from a histosol as an explanation for the occurrence of organic nitrogen in soil and sediment. Org Geochem 31:679–695

    Article  CAS  Google Scholar 

  • Zang X, Nguyen RT, Harvey HR, Knicker H, Hatcher PG (2001) Preservation of proteinaceous material during the degradation of the green alga Botryococcus braunii: a solid-state 2D N-15 C-13 NMR spectroscopy study. Geochim Cosmochim Acta 65:3299–3305

    Article  CAS  Google Scholar 

  • Zhang HJ, Sheng XR, Pan XM, Zhou JM (1997) Activation of adenylate kinase by denaturants is due to the increasing conformational flexibility at its active sites. Biochem Biophys Res Commun 238:382–386

    Article  PubMed  CAS  Google Scholar 

  • Ziervogel K, Karlsson E, Arnosti C (2007) Surface associations of enzymes and of organic matter: consequences for hydrolytic activity and organic matter remineralization in marine systems. Mar Chem 104:241–252

    Article  CAS  Google Scholar 

  • Zimmerman AR, Chorover J, Goyne KW, Brantley SL (2004a) Protection of mesopore-adsorbed organic matter from enzymatic degradation. Environ Sci Technol 38:4542–4548

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman AR, Goyne KW, Chorover J, Komarneni S, Brantley SL (2004b) Mineral mesopore effects on nitrogenous organic matter adsorption. Org Geochem 35:355–375

    Article  CAS  Google Scholar 

  • Zittle CA (1953) Adsorption studies of enzymes and other proteins. Adv Enzymol Rel S Bi 14:319–374

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Zimmerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zimmerman, A.R., Ahn, MY. (2010). Organo-Mineral–Enzyme Interaction and Soil Enzyme Activity. In: Shukla, G., Varma, A. (eds) Soil Enzymology. Soil Biology, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14225-3_15

Download citation

Publish with us

Policies and ethics