Skip to main content

Continuity Order of Local Displacement in Volumetric Image Sequence

  • Conference paper
Biomedical Image Registration (WBIR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6204))

Included in the following conference series:

Abstract

We introduce a method for volumetric cardiac motion analysis using variational optical flow computation involving the prior with the fractional order differentiations. The order of the differentiation of the prior controls the continuity class of the solution. Fractional differentiations is a typical tool for edge detection of images. As a sequel of image analysis by fractional differentiation, we apply the theory of fractional differentiation to a temporal image sequence analysis. Using the fractional order differentiations, we can estimate the orders of local continuities of optical flow vectors. Therefore, we can obtain the optical flow vector with the optimal continuity at each point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sorzano, C.Ó.S., Thévenaz, P., Unser, M.: Elastic registration of biological images using vector-spline regularization. IEEE Tr. Biomedical Engineering 52, 652–663 (2005)

    Article  Google Scholar 

  2. Davis, J.A., Smith, D.A., McNamara, D.E., Cottrell, D.M., Campos, J.: Fractional derivatives-analysis and experimental implementation. Applied Optics 32, 5943–5948 (2001)

    Article  Google Scholar 

  3. Zhang, J., Wei, Z.-H.: Fractional variational model and algorithm for image denoising. In: Proceedings of 4th International Conference on Natural Computation, vol. 5, pp. 524–528 (2008)

    Google Scholar 

  4. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory And Applications of Differentiation and Integration to Arbitrary Order, Dover Books on Mathematics. Dover, New York (2004)

    Google Scholar 

  5. Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic Press, London (1999)

    Google Scholar 

  6. Suter, D.: Motion estimation and vector spline. In: Proceedings of CVPR 1994, pp. 939–942 (1994)

    Google Scholar 

  7. Suter, D., Chen, F.: Left ventricular motion reconstruction based on elastic vector splines. IEEE Tr. Medical Imaging, 295–305 (2000)

    Google Scholar 

  8. Nagel, H.-H., Enkelmann, W.: An investigation of smoothness constraint for the estimation of displacement vector fields from image sequences. IEEE Trans. on PAMI 8, 565–593 (1986)

    Google Scholar 

  9. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)

    Article  Google Scholar 

  10. Timoshenko, S.P.: History of Strength of Materials. Dover, New York (1983)

    Google Scholar 

  11. Grenander, U., Miller, M.: Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics 4, 617–694 (1998)

    MathSciNet  Google Scholar 

  12. Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. IJCV 67, 141–158 (2006)

    Article  Google Scholar 

  13. Yin, W., Goldfarb, D., Osher, S.: A comparison of three total variation based texture extraction models. J. Visual Communication and Image Representation 18, 240–252 (2007)

    Article  Google Scholar 

  14. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming 55, 293–318 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Modersitzki, J.: Numerical Methods for Image Registration. Oxford Univ. Pr., Oxford (2004)

    MATH  Google Scholar 

  16. Momani, S., Odibat, Z.: Numerical comparison of methods for solving linear differential equations of fractional order. Chaos, Solitons and Fractals 31, 1248–1255 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Murio, D.A.: Stable numerical evaluation of Grünwald-Letnikov fractional derivatives applied to a fractional IHCP. Inverse Problems in Science and Engineering 17, 229–243 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Debbi, L.: Explicit solutions of some fractional partial differential equations via stable subordinators. J. of Applied Mathematics and Stochastic Analysis, Article ID 93502 2006, 1–18 (2006)

    Article  Google Scholar 

  19. Debbi, L.: On some properties of a high order fractional differential operator which is not in general selfadjoint. Applied Mathematical Sciences 1, 1325–1339 (2007)

    MATH  MathSciNet  Google Scholar 

  20. Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Fractional diffusion in inhomogeneous media. J. Phys. A: Math. Gen. 38, L679–L684 (2005)

    Article  MathSciNet  Google Scholar 

  21. Duits, R., Felsberg, M., Florack, L.M.J., Platel, B.: α scale spaces on a bounded domain. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 502–518. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  22. Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. IJCV 67, 141–158 (2006)

    Article  Google Scholar 

  23. Ortiguera, M.D.: Riesz potential operations and inverses via fractional centred derivatives. International Journal of Mathematics and Mathematical Sciences, Article ID 48391, 1–12 (2008)

    Google Scholar 

  24. Krueger, W.M., Phillips, K.: The geometry of differential operator with application to image processing. PAMI 11, 1252–1264 (1989)

    Google Scholar 

  25. Unser, M., Blu, T.: Fractional spline and wavelets. SIAM Review 43, 43–67 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kashu, K., Kameda, Y., Narita, M., Imiya, A., Sakai, T. (2010). Continuity Order of Local Displacement in Volumetric Image Sequence. In: Fischer, B., Dawant, B.M., Lorenz, C. (eds) Biomedical Image Registration. WBIR 2010. Lecture Notes in Computer Science, vol 6204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14366-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14366-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14365-6

  • Online ISBN: 978-3-642-14366-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics