Skip to main content

Fractal Gene Regulatory Networks for Robust Locomotion Control of Modular Robots

  • Conference paper
From Animals to Animats 11 (SAB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6226))

Included in the following conference series:

Abstract

Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed and the results show good performance compared to previous results achieved using learning methods. Furthermore, some experiments are performed to investigate evolvability of the achieved solutions in the case of module failure and it is shown that the system is capable of come up with new effective solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bentley, P.J.: Fractal proteins. J. Genetic Programming and Evolvable Machines 5(1), 71–101 (2004)

    Article  Google Scholar 

  2. Bentley, P.J.: Adaptive Fractal Gene Regulatory Networks for Robot Control. In: Genetic and Evolutionary Computation Conference, Seattle, USA (2004)

    Google Scholar 

  3. Bentley, P.J.: Evolving Fractal Gene Regulatory Networks for Graceful Degradation of Software. In: Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A., van Steen, M. (eds.) SELF-STAR 2004. LNCS, vol. 3460, pp. 21–35. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Zahadat, P., Katebi, S.D.: Tartarus and Gene Regulatory Networks with Input. J. Adv. Complex Sys. 11(6), 803–829 (2008)

    Article  Google Scholar 

  5. Ostergaard, E.H., Kassow, K., Beck, R., Lund, H.H.: Design of the ATRON Lattice-Based Self-Reconfigurable Robot. J. Auton. Robots 21(2), 165–183 (2006)

    Article  Google Scholar 

  6. Christensen, D.J., Bordignon, M., Schultz, U.P., Shaikh, D., Stoy, K.: Morphology Independent Learning in Modular Robots. In: International Symposium on Distributed Autonomous Robotic Systems, pp. 379–391 (2008)

    Google Scholar 

  7. Kuo, P.D., Leier, A., Banzhaf, W.: Evolving Dynamics in an Artificial Regulatory Network Model. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 571–580. Springer, Heidelberg (2004)

    Google Scholar 

  8. Jakobi, N.: Harnessing Morphogenesis. In: Paton, R. (ed.) International Conference on Information Processing in Cells and Tissues, Liverpool, UK, pp. 29–41 (1995)

    Google Scholar 

  9. Dellaert, F., Beer, R.: A Developmental Model for the Evolution of Complete Autonomous Agents. In: Fourth International Conference on Simulation of Adaptive Behavior, pp. 393–401. MIT Press, Cambridge (1996)

    Google Scholar 

  10. Federici, D.: Evolving a Neurocontroller through a Process of Embryogeny. In: Schaal, S., et al. (eds.) Eighth International Conference of Simulation and Adaptive Behavior, pp. 373–384. MIT Press, Cambridge (2004)

    Google Scholar 

  11. Eggenberger, P.: Evolving Morphologies of Simulated 3D Organisms Based on Differential Gene Expression. In: Husbands, P., Harvey, I. (eds.) Proc. 4th European Conference on Artificial Life (ECAL), pp. 205–213. MIT Press, Cambridge (1997)

    Google Scholar 

  12. Bongard, J.C., Pfeifer, R.: Evolving Complete Agents Using Artificial Ontogeny. In: Hara, F., Pfeifer, R. (eds.) Morpho-functional Machines: The New Species (Designing Embodied Intelligence), pp. 237–258. Springer, Heidelberg (2003)

    Google Scholar 

  13. Federici, D., Downing, K.: Evolution and Development of a Multi-Cellular Organism: Scalability, Resilience and Neutral Complexification. J. Artificial Life 12(3), 381–409 (2006)

    Article  Google Scholar 

  14. Banzhaf, W.: On evolutionary design, embodiment and artificial regulatory networks. In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.) Embodied Artificial Intelligence. LNCS (LNAI), vol. 3139, pp. 284–292. Springer, Heidelberg (2004)

    Google Scholar 

  15. Hornby, G.S., Pollak, B.: The Advantages of Generative Grammatical Encodings for Physical Design. In: Congress on Evolutionary Computation, pp. 600–607. IEEE Press, Los Alamitos (2001)

    Google Scholar 

  16. Kennedy, P.J., Osborn, T.R.: A Model of Gene Expression and Regulation in an Artificial Cellular Organism. J. Complex Systems 13(1), 1–28 (2001)

    MathSciNet  Google Scholar 

  17. Bentley, P.J.: Methods for Improving Simulations of Biological Systems: Systemic Computation and Fractal Proteins. J. R. Soc. Interface (2009)

    Google Scholar 

  18. Bentley, P.J.: Evolving fractal proteins. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 81–92. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Sims, K.: Evolving 3d morphology and behavior by competition. In: Brooks, R., Maes, P. (eds.) Proc. Artificial Life IV, pp. 28–39. MIT Press, Cambridge (1994)

    Google Scholar 

  20. Marbach, D., Ijspeert, A.J.: Co-evolution of Configuration and Control for Homogenous Modular Robots. In: Proc. 8th International Conference on Intelligent Autonomous Systems, Amsterdam, Holland, pp. 712–719 (2004)

    Google Scholar 

  21. Maes, P., Brooks, R.A.: Learning to Coordinate Behaviors. In: National Conference on Artificial Intelligence, pp. 796–802 (1990)

    Google Scholar 

  22. Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.: Automatic Locomotion Design and Experiments for a Modular Robotic System. J. IEEE/ASME Transactions on Mechatronics 10(3), 314–325 (2005)

    Article  Google Scholar 

  23. Sproewitz, A., Moeckel, R., Maye, J., Ijspeert, A.: Learning to Move in Modular Robots using Central Pattern Generators and Online Optimization. J. Rob. Res. 27(3-4), 423–443 (2008)

    Article  Google Scholar 

  24. Christensen, D.J., Schultz, U.P., Brandt, D., Stoy, K.: A Unified Simulator for Self-reconfigurable Robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zahadat, P., Christensen, D.J., Schultz, U.P., Katebi, S., Stoy, K. (2010). Fractal Gene Regulatory Networks for Robust Locomotion Control of Modular Robots. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, JA., Mouret, JB. (eds) From Animals to Animats 11. SAB 2010. Lecture Notes in Computer Science(), vol 6226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15193-4_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15193-4_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15192-7

  • Online ISBN: 978-3-642-15193-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics