Skip to main content

He–Ne and Solid-State Ring Laser Gyroscopes

  • Chapter
  • First Online:
Advances in Gyroscope Technologies

Abstract

Commercial success of the He–Ne Ring Laser Gyroscope (RLG) began in the late 1980s and early 1990s. Since He–Ne RLG first demonstration in 1963 (Macek and Davis, Appl Phys Lett 2:67–68, 1963 [1]), a number of industrial companies have developed a great research effort for RLG technology improvement so that this optical sensor has become a widely diffused commercial device. For instance, navigation systems based on He–Ne RLGs has been installed on over 50 different aircrafts (Barbour, AiAA Guidance, Navigation and Control Conference, Montreal, Canada, 2001 [2]). Since several years, He–Ne RLG dominates the high-performance gyros market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Macek, W.M., Davis, D.T.M.: Rotation rate sensing with travelling-wave ring lasers. Appl. Phys. Lett. 2, 67–68 (1963)

    Article  Google Scholar 

  2. Barbour, N.: Inertial components—past, present, and future. AIAA Guidance, Navigation and Control Conference, Montreal, Canada, 6–9 August 2001

    Google Scholar 

  3. Schwartz, S., Feugnet, G., Pocholle, J.-P.: Diode-pumped solid-state ring laser gyroscope. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Baltimore, USA, paper JThD47, 6–11 May 2007

    Google Scholar 

  4. Rosenthal, A.H.: Regenerative circulatory multiple-beam interferometry for the study of light-propagation effects. J. Opt. Soc. Am. 52, 1143–1148 (1962)

    Article  Google Scholar 

  5. Aronowitz, F.: The laser gyro. In: Ross, M. (ed.) Laser Applications. Academic Press, New York (1971)

    Google Scholar 

  6. Faucheux, M., Fayoux, D., Roland, J.J.: The ring laser gyro. J. Opt. 19, 101–115 (1988)

    Article  Google Scholar 

  7. Wilkinson, J.R.: Ring lasers. Progr Quantum Electron 11, 1–103 (1987)

    Article  Google Scholar 

  8. Heer, C.V.: History of the laser gyro. Proc. SPIE 487, 2–12 (1984)

    Google Scholar 

  9. Killpatrick, J.: The laser gyro. IEEE. Spectr. 4(10), 44–55 (1967)

    Article  Google Scholar 

  10. Lim, W.L., Hauck, J.P., Raquet, J.W.: Pentagonal ring laser gyro design. US Patent # 4,705,398, 1987

    Google Scholar 

  11. Simms, G.J.: Ring laser gyroscopes. US Patent # 4,407,583, 1983.

    Google Scholar 

  12. Aronowitz, F.: Effects of radiation trapping on mode competition and dispersion in the ring laser. Appl. Opt. 11, 2146–2152 (1972)

    Article  Google Scholar 

  13. Aronowitz, F.: Single-isotope laser gyro. Appl. Opt. 11, 408–412 (1972)

    Google Scholar 

  14. Bretenaker, F., Lépine, B., Le Calvez, A., Adam, O., Taché, J.-P., Le Floch, A.: Resonant diffraction mechanism, nonreciprocity, and lock-in in the ring-laser gyroscope. Phys. Rev. A 47, 543–551 (1993)

    Article  Google Scholar 

  15. Podgorski, T.J., Aronowitz, F.: Langmuir flow effects in the laser gyro. IEEE. J. Quantum Electron. QE-4, 11–18 (1968)

    Google Scholar 

  16. Aronowitz, F., Collins, R.J.: Mode coupling due to backscattering in a He–Ne travelling-wave ring laser. Appl. Phys. Lett. 9, 55–58 (1966)

    Article  Google Scholar 

  17. Aronowitz, F., Collins, R.J.: Lock-in and intensity-phase injection in the ring laser. J. Appl. Phys. 41, 130–141 (1970)

    Article  Google Scholar 

  18. Spreeuw, R.J.C., Neelen, R.C., van Druten, N.J., Eliel, E.R., Woerdman, J.P.: Mode coupling in a He–Ne ring laser with backscattering. Phys. Rev. A 42, 4312–4324 (1990)

    Article  Google Scholar 

  19. Kataoka, I., Kawahara, Y.: Dependence of lock-in and winking pattern on the phase-interaction of scattering waves in the ring laser. Jpn. J. Appl. Phys. 25, 1365–1372 (1986)

    Article  Google Scholar 

  20. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  21. Chow, W.W., Gea-Banacloche, J., Pedrotti, L.M., Sanders, V.E., Schleich, W., Scully, M.O.: The ring laser gyro. Rev. Mod. Phys. 57, 61–104 (1985)

    Article  Google Scholar 

  22. Thomson, A., King, P.: Ring-laser accuracy. Electron. Lett. 2, 417 (1966)

    Article  Google Scholar 

  23. Macek, W., Schneider, J., Salamon, R.: Measurement of Fresnel drag with the ring laser. J. Appl. Phys. 35, 2556–2557 (1964)

    Article  Google Scholar 

  24. Krebs, J., Maisch, W., Prinz, G., Forester, D.: Applications of magneto-optics in ring laser gyroscopes. IEEE. Trans. Magn. 16, 1179–1184 (1980)

    Article  Google Scholar 

  25. Hutchings, T., Winocur, J., Durrett, R., Jacobs, E., Zingery, W.: Amplitude and frequency characteristics of a ring laser. Phys. Rev. 152, 467–473 (1967)

    Article  Google Scholar 

  26. Andrews, D.A., King, T.A.: Sources of error and noise in a magnetic mirror gyro. IEEE J. Quantum Electron. 32, 543–548 (1996)

    Article  Google Scholar 

  27. Macek, M.: Ring laser magnetic bias mirror compensated for non-reciprocal loss. US Patent # 3,851,973, 1974

    Google Scholar 

  28. McClure, R.E.: Ring laser frequency biasing mechanism. US Patent # 3,927,946, 1975

    Google Scholar 

  29. Killpatrick, J.: Random bias for laser angular rate sensor. US Patent # 3,467,472, 1969

    Google Scholar 

  30. Aronowitz, F.: Fundamentals of the ring laser gyro. In: Loukianov, D., Rodloff, R., Sorg, H., Stieler, B. (eds.) Optical Gyros and their Applications. NATO Research and Technology Organization (1999)

    Google Scholar 

  31. Chow, W.W., Hambenne, J.B., Hutchings, T.J., Sanders, V.E., Sargent, M., Scully, M.O.: Multioscillator laser gyros. IEEE J. Quantum Electron. QE-16, 918–936 (1980)

    Article  Google Scholar 

  32. de Lang, H.: Eigenstates of polarization in lasers. Phillips Res. Rep. 19, 429–440 (1964)

    Google Scholar 

  33. Yntema, G.B., Grant, D.C., Warner, R.T.: Differential laser gyro system. US Patent # 3,862,803, 1975

    Google Scholar 

  34. Volk, C.H., Longstaff, I., Canfield, J.M., Gillespie, S.C.: Litton’s second generation ring laser gyroscope. Proceedings of the 15th Biennial Guidance Test Symposium, Holloman Air Force Base, New Mexico, USA, pp. 493–502, 24–26 Sept 1991.

    Google Scholar 

  35. Sanders, V.E., Madan, S., Chow, W.W., Scully, M.O.: Beat-note sensitivity in a Zeeman laser gyro: theory and experiment. Opt. Lett. 5, 99–101 (1980)

    Article  Google Scholar 

  36. Azarova, V.V., Golyaev, Y.D., Dmitriev, V.G., Drozdov, M.S., Kazakov, A.A., Melnikov, A.V., Nazarenko, M.M., Svirin, V.N., Soloviova, T.I., Tikhmenev, N.V.: Zeeman laser gyroscopes. In: Loukianov, D., Rodloff, R., Sorg, H., Stieler, B. (eds.) Optical Gyros and their Applications. NATO Research and Technology Organization (1999)

    Google Scholar 

  37. Chesnoy, J.: Picosecond gyrolaser. Opt. Lett. 14, 990–992 (1989)

    Article  Google Scholar 

  38. Dennis, M.L., Diels, J.-C.M., Lai, M.: Femtosecond ring dye laser: a potential new laser gyro. Opt. Lett. 16, 529–531 (1991)

    Article  Google Scholar 

  39. Roland, J.J., Agrawal, G.P.: Optical gyroscopes. Opt. Laser Technol. 13, 239–244 (1981)

    Article  Google Scholar 

  40. Cresser, J.D., Louisell, W.H., Meystre, P., Schleich, W., Scully, M.O.: Quantum noise in ring-laser gyros. I. Theoretical formulation of the problem. Phys. Rev. A 25, 2214–2225 (1982)

    Article  MathSciNet  Google Scholar 

  41. Schleich, W., Cha, C.-S., Cresser, J.D.: Quantum noise in a dithered-ring-laser gyroscope. Phys. Rev. A 29, 230–238 (1984)

    Article  Google Scholar 

  42. Dorschner, T.A., Haus, H.A., Holz, M., Smith, I.W., Statz, H.: Laser gyro at quantum limit. IEEE J. Quantum Electron. QE-16, 1376–1379 (1980)

    Article  Google Scholar 

  43. Jacobs, G.B.: CO2 laser gyro. Appl. Opt. 10, 219–221 (1971)

    Article  MathSciNet  Google Scholar 

  44. Schwartz, S., Feugnet, G., Bouyer, P., Lariontsev, E., Aspect, A., Pocholle, J.-P.: Mode-coupling control in resonant devices: application to solid-state ring lasers. Phys. Rev. Lett. 97, 093902 (2006)

    Article  Google Scholar 

  45. Schwartz, S., Gutty, F., Pocholle, J.-P., Feugnet, G.: Solid-state laser gyro with a mechanically activated gain medium. US Patent # 0,042,225, 2008

    Google Scholar 

  46. Schwartz, S., Gutty, F., Feugnet, G., Loit, E., Pocholle, J.-P.: Solid-state ring laser gyro behaving like its helium-neon counterpart at low rotation rates. Opt. Lett. 34, 3884–3886 (2009)

    Article  Google Scholar 

  47. Mignot, A., Feugnet, G., Schwartz, S., Sagnes, I., Garnache, A., Fabre, C., Pocholle, J.-P.: Single-frequency external-cavity semiconductor ring-laser gyroscope. Opt. Lett. 34, 97–99 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Armenise .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Armenise, M.N. (2010). He–Ne and Solid-State Ring Laser Gyroscopes. In: Advances in Gyroscope Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15494-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15494-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15493-5

  • Online ISBN: 978-3-642-15494-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics