Skip to main content

Digital Holographic Microscopy Working with a Partially Spatial Coherent Source

  • Chapter
  • First Online:
Coherent Light Microscopy

Abstract

We investigate the use of partially spatial coherent illuminations for digital holographic microscopes (DHMs) working in transmission. Depending on the application requirements, the sources are made from a spatially filtered LED or from a decorrelated laser beam. The benefits gained with those sources are indicated. A major advantage is the drastic reduction of the speckle noise making possible high image quality and the proper emulation of phase contrast modes such as differential interference contrast (DIC) . For biomedical applications, the DHMs are coupled with fluorescence sources to achieve multimodal diagnostics. Several implementations of biomedical applications where digital holography is a significant improvement are described. With a fast DHM permitting the analysis of dynamical phenomena, several applications in fluid physics and biomedical applications are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.-C. Poon, M. Motamedi, Optical/Digital incoherent image processing for extended depth of field. Appl. Opt. 26, 4612–4615 (1987)

    Article  ADS  Google Scholar 

  2. E.R. Dowski, Jr., W. Thomas Cathey, Extended depth of field through wave-front coding. Appl. Opt. 34, 1859–1866 (1995)

    Article  ADS  Google Scholar 

  3. U. Schnars, W. Jüptner, Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33, 179–181 (1994)

    Article  ADS  Google Scholar 

  4. I. Yamaguchi, T. Zhang, Phase-shifting digital holography. Opt. Lett. 22, 1268–1270 (1997)

    Article  ADS  Google Scholar 

  5. T. Zhang, I. Yamaguchi, Three-dimensional microscopy with phase-shifting digital holography. Opt. Lett. 23, 1221–1223 (1998)

    Article  ADS  Google Scholar 

  6. E. Cuche, F. Bevilacqua, C. Depeursinge, Digital holography for quantitative phase contrast imaging. Opt. Lett. 24, 291–293 (1999)

    Article  ADS  Google Scholar 

  7. M. Sebesta, M. Gustafsson, Object characterization with refractometric digital Fourier holography. Opt. Lett. 30, 471–473 (2005)

    Article  ADS  Google Scholar 

  8. T. Ikeda, G. Popescu, R.R. Dasari, M.S. Feld, Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt. Lett. 30, 1165–1167 (2005)

    Article  ADS  Google Scholar 

  9. G. Popescu, T. Ikeda, C.A. Best, K. Badizadegan, R.R. Dasari, M.S. Feld, Erythrocyte structure and dynamics quantified by Hilbert phase microscopy. J. Biomed. Opt. 10, 060503 (2005)

    Article  ADS  Google Scholar 

  10. F. Dubois, L. Joannes, J.-C. Legros, Improved three-dimensional imaging with digital holography microscope using a partial spatial coherent source. Appl. Opt. 38, 7085–7094 (1999)

    Article  ADS  Google Scholar 

  11. G. Indebetouw, P. Klysubun, Spatiotemporal digital microholography. J. Opt. Soc. Am. A 18, 319–325 (2001)

    Article  ADS  Google Scholar 

  12. I. Yamaguchi, J.-I. Kato, S. Otha, J. Mizuno, image formation in phase-shifting digital holography and applications to microscopy. Appl. Opt. 40, 6177–6186 (2001)

    Article  ADS  Google Scholar 

  13. D. Dirksena, H. Drostea, B. Kempera, H. Delerlea, M. Deiwickb, H.H. Scheldb, G. von Bally, Lensless Fourier holography for digital holographic interferometry on biological samples. Opt. Lasers Eng. 36, 241–249 (2001)

    Article  Google Scholar 

  14. F. Dubois, C. Yourassowsky, O. Monnom, in Microscopie en Holographie Digitale Avec Une Source Partiellement Cohérente, éd. by M. Faupel, P. Smigielski, R. Grzymala. Imagerie et Photonique pour les sciences du vivant et la médecine. (Fontis Media, Fomartis, 2004), pp. 287–302, Switzerland, Lausanne

    Google Scholar 

  15. P. Marquet, B. Rappaz, P.J. Magistretti, E. Cuche Y. Emery, Tristan colomb and christian depeursinge, Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 30, 468–470 (2005)

    Article  ADS  Google Scholar 

  16. D. Carl, B. Kemper, G. Wernicke, G. von Bally, Parameter-optimized digital holographic microscope for high-resolution living-cell analysis. Appl. Opt. 43, 6536–6544 (2004)

    Article  ADS  Google Scholar 

  17. F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, C. Decaestecker, Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration. J. Biomed. Opt. 11(5), 054032 September/October (2006)

    Article  ADS  Google Scholar 

  18. N. Lue, G. Popescu, T. Ikeda, R.R. Dasari, K. Badizadegan, M.S. Feld, Live cell refractometry using microfluidic devices. Opt. Lett. 31, 2759–2761 (2006)

    Article  ADS  Google Scholar 

  19. F. Charrière, A. Marian, F. Montfort, J. Kühn, T. Colomb, E. Cuche, P. Marquet, C. Depeursinge, Cell refractive index tomography by digital holographic microscopy. Opt. Lett. 31, 178–180 (2006)

    Article  ADS  Google Scholar 

  20. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T.J. Heger, E.A.D. Mitchell, P. Marquet, B. Rappaz, Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba. Opt. Express 14, 7005–7013 (2006)

    Article  ADS  Google Scholar 

  21. P. Marquet, B. Rappaz, F. Charrière, Y. Emery, C. Depeursinge, P. Magistretti, Analysis of cellular structure and dynamics with digital holographic microscopy. Proc. SPIE 6633, 66330F (2007)

    Article  ADS  Google Scholar 

  22. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, G. Pierattini, Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms. Opt. Lett. 29, 854–856 (2004)

    Article  ADS  Google Scholar 

  23. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, G. Pierattini, Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging. Appl. Opt. 42, 1938–1946 (2003)

    Article  ADS  Google Scholar 

  24. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, N. Aspert, Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram. Opt. Express 14, 4300–4306 (2006)

    Article  ADS  Google Scholar 

  25. P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, G. Pierattini, Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction. Opt. Lett. 31, 1405–1407 (2006)

    Article  ADS  Google Scholar 

  26. L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, S. De Nicola, Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram. Appl. Phys. Lett. 90, 041104 (2007)

    Article  ADS  Google Scholar 

  27. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, C. Depeursinge, Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation. Appl. Opt. 45, 851–863 (2006)

    Article  ADS  Google Scholar 

  28. T.-C. Poon, T. Kim, Optical image recognition of three-dimensional objects. Appl. Opt. 38, 370–381 (1999)

    Article  ADS  Google Scholar 

  29. B. Javidi, E. Tajahuerce, Three-dimensional object recognition by use of digital holography. Opt. Lett. 25, 610–612 (2000)

    Article  ADS  Google Scholar 

  30. D. Kim, B. Javidi, Distortion-tolerant 3-D object recognition by using single exposure on-axis digital holography. Opt. Exp. 12, 5539–5548 (2004)

    Article  ADS  Google Scholar 

  31. F. Dubois, C. Minetti, O. Monnom, C. Yourassowsky, J.-C. Legros, Pattern recognition with digital holographic microscope working in partially coherent illumination. Appl. Opt. 41, 4108–4119 (2002)

    Article  ADS  Google Scholar 

  32. E. Cuche, P. Marquet, C. Despeuringe, Aperture Apodization using cubic spline interpolation: application in digital holography microscopy. Opt. Commun. 182, 59–69 (2000)

    Article  ADS  Google Scholar 

  33. F. Dubois, O. Monnom, C. Yourassowsky, J.-C. Legros, Border processing in digital holography by extension of the digital hologram and reduction of the higher spatial frequencies. Appl. Opt. 41, 2621–2626 (2002)

    Article  ADS  Google Scholar 

  34. P. Klysubun, G. Indebetouw, A posteriori processing of spatiotemporal digital microholograms. J. Opt. Soc. Am. A 18, 326–331 (2001)

    Article  ADS  Google Scholar 

  35. L. Yu, L. Cai, Iterative algorithm with a constraint condition for numerical reconstruction of a threedimensional object from its hologram. J. Opt. Soc. Am. A 18, 1033–1045 (2001)

    Article  ADS  Google Scholar 

  36. J. Gillespie, R.A. King, The use of self-entropy as a focus measure in digital holography. Pattern Recogn. Lett. 9, 19–25 (1989)

    Article  Google Scholar 

  37. L. Ma, H. Wang, Y. Li, H. Jin, Numerical reconstruction of digital holograms for three-dimensional shape measurement. J. Opt. A: Pure Appl. Opt. 6, 396–400 (2004)

    Article  ADS  Google Scholar 

  38. P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, G. Pierattini, Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time. Opt. Lett. 28, 1257–1259 (2003)

    Article  ADS  Google Scholar 

  39. M. Liebling, M. Unser, Autofocus for digital Fresnel Holograms by use of a Fresnelet-Sparsity criterion. J. Opt. Soc. Am. 21, 2424–2430 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  40. F. Dubois, C. Schockaert, N. Callens, C. Yourassowsky, Focus plane detection criteria in digital holography microscopy by amplitude analysis. Opt. Express 14, 5895–5908 (2006)

    Article  ADS  Google Scholar 

  41. W. Li, N.C. Loomis, Q. Hu, C.S. Davis, Focus detection from digital in-line holograms based on spectral l1 norms. J. Opt. Soc. Am. A 24, 3054–3062 (2007)

    Article  ADS  Google Scholar 

  42. C.P. McElhinney, J.B. McDonald, A. Castro, Y. Frauel, B. Javidi, T.J. Naughton, Depth-independent segmentation of macroscopic three-dimensional objects encoded in single perspectives of digital holograms. Opt. Lett. 32, 1229–1231 (2007)

    Article  ADS  Google Scholar 

  43. M. Paturzo, P. Ferraro, Creating an extended focus image of a tilted object in Fourier digital holography. Opt. Exp. 17, 20546–20552 (2009)

    Article  ADS  Google Scholar 

  44. T. Kim, T-C. Poon, G. Indebetouw, Depth detection and image recovery in remote sensing by optical scanning holography. Opt. Eng. 41, 1331–1338 (2002)

    Article  ADS  Google Scholar 

  45. S.S. Kou, C.J.R. Sheppard, Imaging in digital holographicmicroscopy. Opt. Exp. 15, 13640–13648 (2007)

    Article  ADS  Google Scholar 

  46. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R.R. Dasari, M.S. Feld, Optical diffraction tomography for high resolution live cell imaging. Opt. Express 17, 266–277 (2009)

    Article  ADS  Google Scholar 

  47. S.-H. Hong, J.-S. Jang, B. Javidi, Three-dimensional volumetric object reconstruction using computational integral imaging. Opt. Exp. 12, 483–491 (2004)

    Article  ADS  Google Scholar 

  48. F. Dubois, M.-L.N. Requena, C. Minetti, O. Monnom, E. Istasse, Partial spatial coherence effects in digital holographic microscopy with a laser source. Appl. Opt. 43, 1131–1139 (2004)

    Article  ADS  Google Scholar 

  49. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, O. Monnom, Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis. Appl. Opt. 45, 864–871 (2006)

    Article  ADS  Google Scholar 

  50. D.S. Mehta, K. Saxena, S.K. Dubey C. Shakher, Coherence characteristics of light-emitting diodes. J. Lumin. 130, 96–102 (2010)

    Article  Google Scholar 

  51. B. Kemper1, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, G. von Bally, Application of 3D tracking, LED illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy. Proc. SPIE 7184, 1–12 (2009)

    Google Scholar 

  52. M. Takeda, H. Ina, S. Kobayashi, Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72, 156–160 (1982)

    Article  ADS  Google Scholar 

  53. T. Kreis, Digital holographic interference-phase measurement using the Fourier-transform method. J. Opt. Soc. Am. A 3, 847–855 (1986)

    Article  ADS  Google Scholar 

  54. J. Shamir, Optical Systems and Processes (SPIE Press, Bellingham, WA, 1999)

    Book  Google Scholar 

  55. P. Chavel, S. Lowenthal, Noise and coherence in optical image processing. II. Noise fluctuations. J. Opt. Soc. Am. 68, 721–732 (1978)

    Article  ADS  Google Scholar 

  56. F. Dubois, C. Yourassowsky, Method and device for obtaining a sample with three-dimensional microscopy. US 7,009,700 B2, Mar.7 (2006)

    Google Scholar 

  57. J.C. Giddings, A system based on split-flow lateral-transport thin (SPLITT) for rapid and continuous particle fractionation. Sep. Sci. Technol. 20, 749–768 (1985)

    Article  Google Scholar 

  58. P.M. Vlahovska, T. Podgorski, C. Misbah, Vesicles and red blood cells in flow: From individual dynamics to rheology. C. R. Phys. 10, 775–789 (2009)

    Article  ADS  Google Scholar 

  59. N. Callens, C. Minetti, G. Coupier, M.-A. Mader, F. Dubois, C. Misbah, T. Podgorski, Hydrodynamic lift of vesicles under shear flow in microgravity. Europhys. Lett. 83, 24002 (2008)

    Article  ADS  Google Scholar 

  60. V. Vitkova, M. Mader, B. Polack, C. Misbah, T. Podgorski, Micro-macro link in rheology of erythrocyte and vesicle suspensions. Biophys. J. 95(7), 33–35 (2008)

    Article  Google Scholar 

  61. G. Danker, T. Biben, T. Podgorski, C. Verdier, C. Misbah, Dynamics and rheology of a dilute suspension of vesicles: higher order theory. Phys. Rev. E 76, 041905 (2007)

    Article  ADS  Google Scholar 

  62. M. Mader, V. Vitkova, M. Abkarian, T. Podgorski, A. Viallat, “Dynamics of viscous vesicles in shear flow. Eur. Phys. J. E 19, 389–397 (2006)

    Article  Google Scholar 

  63. C. Minetti, N. Callens, G. Coupier, T. Podgorski, F. Dubois, Fast measurements of concentration profiles inside deformable objects in microlows with reduced spatial coherence digital holography. Appl. Opt. 47, 5305–5314 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Dubois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dubois, F. et al. (2011). Digital Holographic Microscopy Working with a Partially Spatial Coherent Source. In: Ferraro, P., Wax, A., Zalevsky, Z. (eds) Coherent Light Microscopy. Springer Series in Surface Sciences, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15813-1_2

Download citation

Publish with us

Policies and ethics