Skip to main content

The Complex Gaussian Kernel LMS Algorithm

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6353))

Included in the following conference series:

Abstract

Although the real reproducing kernels are used in an increasing number of machine learning problems, complex kernels have not, yet, been used, in spite of their potential interest in applications such as communications. In this work, we focus our attention on the complex gaussian kernel and its possible application in the complex Kernel LMS algorithm. In order to derive the gradients needed to develop the complex kernel LMS (CKLMS), we employ the powerful tool of Wirtinger’s Calculus, which has recently attracted much attention in the signal processing community. Writinger’s calculus simplifies computations and offers an elegant tool for treating complex signals. To this end, the notion of Writinger’s calculus is extended to include complex RKHSs. Experiments verify that the CKLMS offers significant performance improvements over the traditional complex LMS or Widely Linear complex LMS (WL-LMS) algorithms, when dealing with nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  2. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press, London (2009)

    Google Scholar 

  3. Liu, W., Pokharel, P., Principe, J.C.: The kernel least-mean-square algorithm. IEEE Trans. Sign. Proc. 56(2), 543–554 (2008)

    Article  MathSciNet  Google Scholar 

  4. Kivinen, J., Smola, A., Williamson, R.C.: Online learning with kernels. IEEE Trans. Sign. Proc. 52(8), 2165–2176 (2004)

    Article  MathSciNet  Google Scholar 

  5. Engel, Y., Mannor, S., Meir, R.: The kernel recursive least-squares algorithm. IEEE Trans. Sign. Proc. 52(8) (2004)

    Google Scholar 

  6. Slavakis, K., Theodoridis, S., Yamada, I.: On line classification using kernels and projection based adaptive algorithm. IEEE Trans. Signal Process. 56(7), 2781–2797 (2008)

    Article  MathSciNet  Google Scholar 

  7. Slavakis, K., Theodoridis, S., Yamada, I.: Adaptive constrained learning in reproducing kernel hilbert spaces: The robust beamforming case. IEEE Trans. Signal Process. 57(12), 4744–4764 (2009)

    Article  Google Scholar 

  8. Kim, K., Franz, M.O., Scholkopf, B.: Iterative kernel principal component analysis for image modeling. IEEE Trans. Pattern Anal. Mach. Intell. 27(9), 1351–1366 (2005)

    Article  Google Scholar 

  9. Bouboulis, P., Slavakis, K., Theodoridis, S.: Adaptive kernel-based image denoising employing semi-parametric regularization. IEEE Trans. Image Process. (to appear)

    Google Scholar 

  10. Smola, A.J., Schölkopf, B., Muller, K.R.: Kernel principal component analysis. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997)

    Google Scholar 

  11. Filippone, M., Camastra, F., Masulli, F., Rovetta, S.: A survey of kernel and spectral methods for clustering. Pattern Recognition 41(1), 176–190 (2008)

    Article  MATH  Google Scholar 

  12. Liu, W., Principe, J.C., Haykin, S.: Kernel Adaptive Filtering. Wiley, Chichester (2010)

    Book  Google Scholar 

  13. Wirtinger, W.: Zur formalen theorie der functionen von mehr complexen veränderlichen. Math. Ann. 97, 357–375 (1927)

    Article  MathSciNet  Google Scholar 

  14. Picinbono, B., Chevalier, P.: Widely linear estimation with complex data. IEEE Trans. Signal Process. 43(8), 2030–2033 (1995)

    Article  Google Scholar 

  15. Adali, T., Li, H.: Complex-valued adaptive signal processing. In: Adali, T., Haykin, S. (eds.) Adaptive Signal Processing: Next Generation Solutions. Wiley, Hoboken (2010)

    Google Scholar 

  16. Adali, T., Li, H., Novey, M., Cardoso, J.F.: Complex ICA using nonlinear functions. IEEE Trans. Signal Process. 56(9), 4536–4544 (2008)

    Article  MathSciNet  Google Scholar 

  17. Mattera, D., Paura, L., Sterle, F.: Widely linear decision-feedback equalizer for time-dispersive linear MIMO channels. IEEE Trans. Signal Process. 53(7), 2525–2536 (2005)

    Article  MathSciNet  Google Scholar 

  18. Navarro-Moreno, J.: ARMA prediction of widely linear systems by using the innovations algorithm. IEEE Trans. Signal Process. 56(7), 3061–3068 (2008)

    Article  MathSciNet  Google Scholar 

  19. Saitoh, S.: Integral Transforms, Reproducing Kernels and their applications. Longman Scientific & Technical, Harlow (1997)

    MATH  Google Scholar 

  20. Paulsen, V.I.: An introduction to the theory of reproducing kernel hilbert spaces, http://www.math.uh.edu/~vern/rkhs.pdf

  21. Aronszajn, N.: Theory of reproducing kernels. Transactions of the American Mathematical Society 68(3), 337–404 (1950)

    MATH  MathSciNet  Google Scholar 

  22. Steinwart, I., Hush, D., Scovel, C.: An explicit description of the reproducing kernel hilbert spaces of gaussian rbf kernels. IEEE Transactions on Information Theory 52(10), 4635–4643 (2006)

    Article  MathSciNet  Google Scholar 

  23. Mandic, D., Goh, V.S.L.: Complex Valued Nonlinear Adaptive Filters. Wiley, Chichester (2009)

    Book  Google Scholar 

  24. Cacciapuoti, A.S., Gelli, G., Paura, L., Verde, F.: Widely linear versus linear blind multiuser detection with subspace-based channel estimation: Finite sample-size effects. IEEE Trans. Signal Process. 57(4), 1426–1443 (2009)

    Article  MathSciNet  Google Scholar 

  25. Kreutz-Delgado, K.: The complex gradient operator and the ℂℝ-calculus, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.6515&rep=rep1&type=pdf

  26. Platt, J.: A resourse allocating network for function interpolation. Newral Computation 3(2), 213–225 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bouboulis, P., Theodoridis, S. (2010). The Complex Gaussian Kernel LMS Algorithm. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15822-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15822-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15821-6

  • Online ISBN: 978-3-642-15822-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics