Skip to main content

Optimal Authentication Codes from Difference Balanced Functions

  • Conference paper
Sequences and Their Applications – SETA 2010 (SETA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6338))

Included in the following conference series:

  • 1014 Accesses

Abstract

In this paper, we present two classes of optimal authentication codes without secrecy from difference balanced functions. The new codes are as good as or have more flexible parameters than the optimal codes from perfect nonlinear functions.

This work was in part supported by Australia-China Special Fund under Grant 61011120055.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bini, G.: A-codes from rational functions over galois rings. Designs, Codes and Cryptography 39, 207–214 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Carlet, C., Ding, C.: Authentication schemes from highly nonlinear functions. In: ISIT 2006, Seattle, USA (July 2006)

    Google Scholar 

  3. Chanson, S., Ding, C., Salomaa, A.: Cartesian authentication codes from functions with optimal nonlinearity. Theoretical Computer Science 290, 24–33 (2003)

    Article  MathSciNet  Google Scholar 

  4. Ding, C., Helleseth, T., Klφve, T., Wang, X.: A generic construction of cartesian authentication code. IEEE Trans. Inform. Theory 53(6), 2229–2235 (2007)

    Article  MathSciNet  Google Scholar 

  5. Ding, C., Niederreiter, N.: Systematic authentication code from highly nonlinear functions. IEEE Trans. Inform. Theory 50(10), 2421–2428 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ding, C., Wang, X.: A coding theory construction of new systematic authentication codes. Theoretical Computer Science 330, 81–99 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Golomb, S.W., Gong, G.: Signal design for good correlation for wireless communication, cryptography and radar. Cambridge Press, Cambridge (2005)

    Google Scholar 

  8. Helleseth, T., Gong, G.: New binary sequences with ideal-level autocorrelation function. IEEE Trans. Inform. Theory 154(18), 2868–2872 (2002)

    Article  MathSciNet  Google Scholar 

  9. Helleseth, T., Johansson, T.: Universal hash functions from exponential sums over finite fields and galois rings. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 31–44. Springer, Heidelberg (1996)

    Google Scholar 

  10. Kabatianskii, G.A., Sweets, B., Joansson, T.: On the relationship between A-codes and codes correcting independent errors. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 1–11. Springer, Heidelberg (1994)

    Google Scholar 

  11. Kabatianskii, G.A., Sweets, B., Joansson, T.: On the cardinality of systematic authentication codes via error-correcting codes. IEEE Trans. Inform. Theory 42(2), 566–578 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jang, J.-W., Kim, Y.-S., No, J.-S., Helleseth, T.: New family of p-ary sequences with optimal correlation property and large linear span. IEEE Trans. Inform. Theory 50(8), 1839–1844 (2004)

    Article  MathSciNet  Google Scholar 

  13. Klapper, A.: d-from sequence: Families of sequences with low correlaltion values and large linear spans. IEEE Trans. Inform. Theory 51(4), 1469–1477 (1995)

    Google Scholar 

  14. No, J.-S.: New cyclic difference sets with Singer parameters constructed from d-homogeneous function. Designs, Codes and Cryptography 33, 199–213 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Stinson, D.R.: Cryptography: Theory and Practice. CRC, Boca Raton (1995)

    MATH  Google Scholar 

  16. Simmons, G.J.: Authentication theory/coding theory. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 411–431. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  17. Tang, X.H.: A note on d-form function with differencebalanced property (Preprint)

    Google Scholar 

  18. Wang, H., Xing, C., Safavi-Naini, R.: Linear authentication codes: Bounds and constructions. IEEE Trans. Inform. Theory 49(4), 866–872 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, Y., Tang, X., Parampalli, U. (2010). Optimal Authentication Codes from Difference Balanced Functions. In: Carlet, C., Pott, A. (eds) Sequences and Their Applications – SETA 2010. SETA 2010. Lecture Notes in Computer Science, vol 6338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15874-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15874-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15873-5

  • Online ISBN: 978-3-642-15874-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics