Skip to main content

Using High-Dimensional Image Models to Perform Highly Undetectable Steganography

  • Conference paper
Information Hiding (IH 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6387))

Included in the following conference series:

Abstract

This paper presents a complete methodology for designing practical and highly-undetectable stegosystems for real digital media. The main design principle is to minimize a suitably-defined distortion by means of efficient coding algorithm. The distortion is defined as a weighted difference of extended state-of-the-art feature vectors already used in steganalysis. This allows us to “preserve” the model used by steganalyst and thus be undetectable even for large payloads. This framework can be efficiently implemented even when the dimensionality of the feature set used by the embedder is larger than 107. The high dimensional model is necessary to avoid known security weaknesses. Although high-dimensional models might be problem in steganalysis, we explain, why they are acceptable in steganography. As an example, we introduce HUGO, a new embedding algorithm for spatial-domain digital images and we contrast its performance with LSB matching. On the BOWS2 image database and in contrast with LSB matching, HUGO allows the embedder to hide 7× longer message with the same level of security level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R.: Stretching the limits of steganography. In: Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 39–48. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  2. Cachin, C.: An information-theoretic model for steganography. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 306–318. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Cancelli, G., Barni, M., Menegaz, G.: Mpsteg: hiding a message in the matching pursuit domain. In: Proceedings SPIE, EI, Security, Steganography, and Watermarking of Multimedia Contents VIII, San Jose, CA, vol. 6072, p. 60720P (2006)

    Google Scholar 

  4. Crandall, R.: Some notes on steganography. Steganography Mailing List (1998), http://os.inf.tu-dresden.de/~westfeld/crandall.pdf

  5. Filler, T., Fridrich, J.: Fisher information determines capacity of ε-secure steganography. In: Katzenbeisser, S., Sadeghi, A.-R. (eds.) IH 2009. LNCS, vol. 5806, pp. 31–47. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Filler, T., Fridrich, J., Judas, J.: Minimizing embedding impact in steganography using Trellis-Coded Quantization. In: Proceedings SPIE, EI, Media Forensics and Security XII, San Jose, CA, January 18-20, p. 05-1–05-14 (2010)

    Google Scholar 

  7. Filler, T., Ker, A.D., Fridrich, J.: The Square Root Law of steganographic capacity for Markov covers. In: Proceedings SPIE, EI, Security and Forensics of Multimedia XI, San Jose, CA, January 18-21, vol. 7254, p. 08-1–08-11 (2009)

    Google Scholar 

  8. Franz, E.: Steganography preserving statistical properties. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 278–294. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Franz, E., Rönisch, S., Bartel, R.: Improved embedding based on a set of cover images. In: Proceedings of the 11th ACM Multimedia & Security Workshop, Princeton, NJ, September 7-8, pp. 141–150 (2009)

    Google Scholar 

  10. Fridrich, J.: Steganography in Digital Media: Principles, Algorithms, and Applications. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  11. Fridrich, J., Filler, T.: Practical methods for minimizing embedding impact in steganography. In: Proceedings SPIE, EI, Security, Steganography, and Watermarking of Multimedia Contents IX, San Jose, CA, January 29-February 1, vol. 6505, pp. 2–3 (2007)

    Google Scholar 

  12. Fridrich, J., Goljan, M., Soukal, D.: Perturbed quantization steganography. ACM Multimedia System Journal 11(2), 98–107 (2005)

    Article  Google Scholar 

  13. Fridrich, J., Pevný, T., Kodovský, J.: Statistically undetectable JPEG steganography: Dead ends, challenges, and opportunities. In: Proceedings of the 9th ACM Multimedia & Security Workshop, Dallas, TX, September 20-21, pp. 3–14 (2007)

    Google Scholar 

  14. Goljan, M., Fridrich, J., Holotyak, T.: New blind steganalysis and its implications. In: Proceedings SPIE, EI, Security, Steganography, and Watermarking of Multimedia Contents VIII, San Jose, CA, vol. 6072, pp. 1–13 (2006)

    Google Scholar 

  15. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A.: Feature Extraction, Foundations and Applications. Springer, Heidelberg (2006)

    Book  MATH  Google Scholar 

  16. Harmsen, J.J., Pearlman, W.A.: Steganalysis of additive noise modelable information hiding. In: Proceedings SPIE, EI, Security and Watermarking of Multimedia Contents V, Santa Clara, CA, January 21-24, vol. 5020, pp. 131–142 (2003)

    Google Scholar 

  17. Ker, A.D., Böhme, R.: Revisiting weighted stego-image steganalysis. In: Proceedings SPIE, EI, Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, San Jose, CA, January 27-31, vol. 6819, p. 5-1–5-17 (2008)

    Google Scholar 

  18. Ker, A.D., Pevný, T., Kodovský, J., Fridrich, J.: The Square Root Law of steganographic capacity. In: Proceedings of the 10th ACM Multimedia & Security Workshop, Oxford, UK, September 22-23, pp. 107–116 (2008)

    Google Scholar 

  19. Kim, Y., Duric, Z., Richards, D.: Modified matrix encoding technique for minimal distortion steganography. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS, vol. 4437, pp. 314–327. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Kodovský, J., Fridrich, J.: On completeness of feature spaces in blind steganalysis. In: Proceedings of the 10th ACM Multimedia & Security Workshop, Oxford, UK, September 22-23, pp. 123–132 (2008)

    Google Scholar 

  21. Kodovský, J., Pevný, T., Fridrich, J.: Modern steganalysis can detect YASS. In: Proceedings SPIE, EI, Media Forensics and Security XII, San Jose, CA (2010)

    Google Scholar 

  22. Pevný, T., Bas, P., Fridrich, J.: Steganalysis by subtractive pixel adjacency matrix. In: Proceedings of the 11th ACM Multimedia & Security Workshop, Princeton, NJ, September 7-8, pp. 75–84 (2009)

    Google Scholar 

  23. Pevný, T., Fridrich, J.: Benchmarking for steganography. In: Solanki, K., Sullivan, K., Madhow, U. (eds.) IH 2008. LNCS, vol. 5284, pp. 251–267. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Ryabko, B., Ryabko, D.: Asymptotically optimal perfect steganographic systems. Problems of Information Transmission 45(2), 184–190 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sachnev, V., Kim, H.J., Zhang, R.: Less detectable JPEG steganography method based on heuristic optimization and BCH syndrome coding. In: Proceedings of the 11th ACM Multimedia & Security Workshop, September 7-8, pp. 131–140 (2009)

    Google Scholar 

  26. Sallee, P.: Model-based steganography. In: Kalker, T., Cox, I., Ro, Y.M. (eds.) IWDW 2003. LNCS, vol. 2939, pp. 154–167. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  27. Ullerich, C., Westfeld, A.: Weaknesses of MB2. In: Shi, Y.Q., Kim, H.-J., Katzenbeisser, S. (eds.) IWDW 2007. LNCS, vol. 5041, pp. 127–142. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  29. Wang, Y., Moulin, P.: Perfectly secure steganography: Capacity, error exponents, and code constructions. IEEE Transactions on Information Theory, Special Issue on Security 55(6), 2706–2722 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Westfeld, A.: High capacity despite better steganalysis (F5 – a steganographic algorithm). In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 289–302. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  31. Zhang, X., Zhang, W., Wang, S.: Efficient double-layered steganographic embedding. Electronics Letters 43, 482–483 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pevný, T., Filler, T., Bas, P. (2010). Using High-Dimensional Image Models to Perform Highly Undetectable Steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds) Information Hiding. IH 2010. Lecture Notes in Computer Science, vol 6387. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16435-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16435-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16434-7

  • Online ISBN: 978-3-642-16435-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics