Skip to main content

roX RNAs and Genome Regulation in Drosophila Melanogaster

  • Chapter
  • First Online:
Long Non-Coding RNAs

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 51))

Abstract

Organisms with dimorphic sex chromosomes suffer a potentially lethal imbalance in gene expression in one sex. Addressing this fundamental problem can be considered the first, and most essential, aspect of sexual differentiation. In the model organisms Drosophila, Caenorhabditis elegans, and mouse, expression from X-linked genes is modulated by selective recruitment of chromatin-modifying complexes to X chromatin. In both flies and mammals, large noncoding RNAs have a central role in recruitment and activity of these complexes. This review will summarize current knowledge of the function of the noncoding roX genes in this process in Drosophila. Identification of an autosomal function for the roX RNAs raises intriguing questions about the origin of the modern dosage compensation system in flies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar A, Becker PB (2000) Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 5:367–375

    Article  PubMed  CAS  Google Scholar 

  • Akhtar A, Zink D, Becker PB (2000) Chromodomains are protein-RNA interaction modules. Nature 407:405–409

    Article  PubMed  CAS  Google Scholar 

  • Alekseyenko AA, Peng S, Larschan E, Gorchakov AA, Lee OK, Kharchenko P, McGrath SD, Wang CI, Mardis ER, Park PJ et al (2008) A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome. Cell 134:599–609

    Article  PubMed  CAS  Google Scholar 

  • Amrein H, Axel R (1997) Genes expressed in neurons of adult male Drosophila. Cell 88:459–469

    Article  PubMed  CAS  Google Scholar 

  • Bashaw GJ, Baker BS (1995) The msl-2 dosage compensation gene of Drosophila encodes a putative DNA-binding protein whose expression is sex specifically regulated by Sex-lethal. Development 121:3245–3258

    PubMed  CAS  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681

    Article  PubMed  CAS  Google Scholar 

  • Bull JJ (1985) Sex determining mechanisms: an evolutionary perspective. Experientia 41:1285–1296

    Article  PubMed  CAS  Google Scholar 

  • Buscaino A, Kocher T, Kind JH, Holz H, Taipale M, Wagner K, Wilm M, Akhtar A (2003) MOF-regulated acetylation of MSL-3 in the Drosophila dosage compensation complex. Mol Cell 11:1265–1277

    Article  PubMed  CAS  Google Scholar 

  • Cai Y, Jin J, Swanson SK, Cole MD, Choi SH, Florens L, Washburn MP, Conaway JW, Conaway RC (2010) Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex. J Biol Chem 285:4268–4272

    Article  PubMed  CAS  Google Scholar 

  • Chan RC, Severson AF, Meyer BJ (2004) Condensin restructures chromosomes in preparation for meiotic divisions. J Cell Biol 167:613–625

    Article  PubMed  CAS  Google Scholar 

  • Chang KA, Kuroda MI (1998) Modulation of MSL1 abundance in female Drosophila contributes to the sex specificity of dosage compensation. Genetics 150:699–709

    PubMed  CAS  Google Scholar 

  • Cline TW, Meyer BJ (1996) Vive la difference: males vs females in flies vs worms. Annu Rev Genet 30:637–702

    Article  PubMed  CAS  Google Scholar 

  • Copps K, Richman R, Lyman LM, Chang KA, Rampersad-Ammons J, Kuroda MI (1998) Complex formation by the Drosophila MSL proteins: role of the MSL2 RING finger in protein complex assembly. EMBO J 17:5409–5417

    Article  PubMed  CAS  Google Scholar 

  • Csankovszki G, Collette K, Spahl K, Carey J, Snyder M, Petty E, Patel U, Tabuchi T, Liu H, McLeod I et al (2009) Three distinct condensin complexes control C. elegans chromosome dynamics. Curr Biol 19:9–19

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Meller VH (2006) roX RNAs are required for increased expression of X-linked genes in Drosophila melanogaster males. Genetics 174:1859–1866

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Meller VH (2008) Molecularly severe roX1 mutations contribute to dosage compensation in Drosophila. Genesis 47:49–54

    Article  Google Scholar 

  • Deng X, Rattner BP, Souter S, Meller VH (2005) The severity of roX1 mutations is predicted by MSL localization on the X chromosome. Mech Dev 122:1094–1105

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Koya SK, Kong Y, Meller VH (2009) Coordinated regulation of heterochromatic genes in Drosophila melanogaster males. Genetics 182:481–491

    Article  PubMed  CAS  Google Scholar 

  • Eisen A, Utley RT, Nourani A, Allard S, Schmidt P, Lane WS, Lucchesi JC, Cote J (2001) The yeast NuA4 and Drosophila MSL complexes contain homologous subunits important for transcription regulation. J Biol Chem 276:3484–3491

    Article  PubMed  CAS  Google Scholar 

  • Franke A, Baker BS (1999) The roX1 and roX2 RNAs are essential components of the compensasome, which mediates dosage compensation in Drosophila. Mol Cell 4:117–122

    Article  PubMed  CAS  Google Scholar 

  • Gebauer F, Merendino L, Hentze MW, Valcarcel J (1998) The Drosophila splicing regulator sex-lethal directly inhibits translation of male-specific-lethal 2 mRNA. RNA 4:142–150

    PubMed  CAS  Google Scholar 

  • Gelbart ME, Kuroda MI (2009) Drosophila dosage compensation: a complex voyage to the X chromosome. Development 136:1399–1410

    Article  PubMed  CAS  Google Scholar 

  • Gelbart ME, Larschan E, Peng S, Park PJ, Kuroda MI (2009) Drosophila MSL complex globally acetylates H4K16 on the male X chromosome for dosage compensation. Nat Struct Mol Biol 16:825–832

    Article  PubMed  CAS  Google Scholar 

  • Grimaud C, Becker PB (2009) The dosage compensation complex shapes the conformation of the X chromosome in Drosophila. Genes Dev 23:2490–2495

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Sharma GG, Young CS, Agarwal M, Smith ER, Paull TT, Lucchesi JC, Khanna KK, Ludwig T, Pandita TK (2005) Involvement of human MOF in ATM function. Mol Cell Biol 25:5292–5305

    Article  PubMed  CAS  Google Scholar 

  • Gupta V, Parisi M, Sturgill D, Nuttall R, Doctolero M, Dudko OK, Malley JD, Eastman PS, Oliver B (2006) Global analysis of X-Chromosome compensation. J Biol 5:3

    Article  PubMed  Google Scholar 

  • Hagstrom KA, Holmes VF, Cozzarelli NR, Meyer BJ (2002) C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev 16:729–742

    Article  PubMed  CAS  Google Scholar 

  • Hilfiker A, Hilfiker-Kleiner D, Pannuti A, Lucchesi JC (1997) mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J 16:2054–2060

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Wang Y, Walker DL, Dong H, Conley C, Johansen J, Johansen KM (1999) JIL-1: a novel chromosomal tandem kinase implicated in transcriptional regulation in Drosophila. Mol Cell 4:129–135

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Wang Y, Johansen J, Johansen KM (2000) JIL-1, a chromosomal kinase implicated in regulation of chromatin structure, associates with the male specific lethal (MSL) dosage compensation complex. J Cell Biol 149:1005–1010

    Article  PubMed  CAS  Google Scholar 

  • Kageyama Y, Mengus G, Gilfillan G, Kennedy H, Stuckenholz C, Kelley R, Becker P, Kuroda M (2001) Association and spreading of the Drosophila dosage compensation complex from a discrete roX1 chromatin entry site. Embo J 20(9):2236–2245

    Article  PubMed  CAS  Google Scholar 

  • Kelley RL, Solovyeva I, Lyman LM, Richman R, Solovyev V, Kuroda MI (1995) Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila. Cell 81:867–877

    Article  PubMed  CAS  Google Scholar 

  • Kelley RL, Meller VH, Gordadze PR, Roman G, Davis RL, Kuroda MI (1999) Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Cell 98:513–522

    Article  PubMed  CAS  Google Scholar 

  • Kelley RL, Lee OK, Shim YK (2008) Transcription rate of noncoding roX1 RNA controls local spreading of the Drosophila MSL chromatin remodeling complex. Mech Dev 125:1009–1019

    Article  PubMed  CAS  Google Scholar 

  • Kind J, Vaquerizas JM, Gebhardt P, Gentzel M, Luscombe NM, Bertone P, Akhtar A (2008) Genome-wide analysis reveals MOF as a key regulator of dosage compensation and gene expression in Drosophila. Cell 133:813–828

    Article  PubMed  CAS  Google Scholar 

  • Kohlmaier A, Savarese F, Lachner M, Martens J, Jenuwein T, Wutz A (2004) A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol 2:E171

    Article  PubMed  Google Scholar 

  • Kuroda MI, Kernan MJ, Kreber R, Ganetzky B, Baker BS (1991) The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell 66:935–947

    Article  PubMed  CAS  Google Scholar 

  • Larsson J, Meller VH (2006) Dosage compensation, the origin and the afterlife of sex chromosomes. Chromosome Res 14:417–431

    Article  PubMed  CAS  Google Scholar 

  • Larschan E, Alekseyenko, A, Gortchakov, A, Peng S, Li B, Yang P, Workman J, Park P, Kuroda M (2007) MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism. Mol Cell 28:121–133

    Article  PubMed  CAS  Google Scholar 

  • Lerach S, Zhang W, Deng H, Bao X, Girton J, Johansen J, Johansen KM (2005) JIL-1 kinase, a member of the male-specific lethal (MSL) complex, is necessary for proper dosage compensation of eye pigmentation in Drosophila. Genesis 43:213–215

    Article  PubMed  CAS  Google Scholar 

  • Li F, Parry DA, Scott MJ (2005) The amino-terminal region of Drosophila MSL1 contains basic, glycine-rich, and leucine zipper-like motifs that promote X chromosome binding, self-association, and MSL2 binding, respectively. Mol Cell Biol 25:8913–8924

    Article  PubMed  CAS  Google Scholar 

  • Li F, Schiemann AH, Scott MJ (2008) Incorporation of the noncoding roX RNAs alters the chromatin-binding specificity of the Drosophila MSL1/MSL2 complex. Mol Cell Biol 28:1252–1264

    Article  PubMed  CAS  Google Scholar 

  • Lieb JD, Capowski EE, Meneely P, Meyer BJ (1996) DPY-26, a link between dosage compensation and meiotic chromosome segregation in the nematode. Science 274:1732–1736

    Article  PubMed  CAS  Google Scholar 

  • Lucchesi JC, Kelly WG, Panning B (2005) Chromatin remodeling in dosage compensation. Annu Rev Genet 39:615–651

    Article  PubMed  CAS  Google Scholar 

  • Lyman LM, Copps K, Rastelli L, Kelley RL, Kuroda MI (1997) Drosophila male-specific lethal-2 protein: structure/function analysis and dependence on MSL-1 for chromosome association. Genetics 147:1743–1753

    PubMed  CAS  Google Scholar 

  • Marin I (2003) Evolution of chromatin-remodeling complexes: comparative genomics reveals the ancient origin of “novel” compensasome genes. J Mol Evol 56:527–539

    Article  PubMed  CAS  Google Scholar 

  • Meller VH (2003) Initiation of dosage compensation in Drosophila embryos depends on expression of the roX RNAs. Mech Dev 120:759–767

    Article  PubMed  CAS  Google Scholar 

  • Meller VH, Rattner BP (2002) The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. EMBO J 21:1084–1091

    Article  PubMed  CAS  Google Scholar 

  • Meller VH, Wu KH, Roman G, Kuroda MI, Davis RL (1997) roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell 88:445–457

    Article  PubMed  CAS  Google Scholar 

  • Mendjan S, Akhtar A (2007) The right dose for every sex. Chromosoma 116:95–106

    Article  PubMed  Google Scholar 

  • Mendjan S, Taipale M, Kind J, Holz H, Gebhardt P, Schelder M, Vermeulen M, Buscaino A, Duncan K, Mueller J et al (2006) Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell 21:811–823

    Article  PubMed  CAS  Google Scholar 

  • Morales V, Straub T, Neumann MF, Mengus G, Akhtar A, Becker PB (2004) Functional integration of the histone acetyltransferase MOF into the dosage compensation complex. EMBO J 23:2258–2268

    Article  PubMed  CAS  Google Scholar 

  • Nguyen DK, Disteche CM (2006) Dosage compensation of the active X chromosome in mammals. Nat Genet 38:47–53

    Article  PubMed  CAS  Google Scholar 

  • Oh H, Park Y, Kuroda MI (2003) Local spreading of MSL complexes from roX genes on the Drosophila X chromosome. Genes Dev 17:1334–1339

    Article  PubMed  CAS  Google Scholar 

  • Park Y, Kelley RL, Oh H, Kuroda MI, Meller VH (2002) Extent of chromatin spreading determined by roX RNA recruitment of MSL proteins. Science 298:1620–1623

    Article  PubMed  CAS  Google Scholar 

  • Park Y, Oh H, Meller VH, Kuroda MI (2005) Variable Splicing of Non-Coding roX2 RNAs Influences Targeting of MSL Dosage Compensation Complexes in Drosophila. RNA Biol 2:157–164

    Article  PubMed  CAS  Google Scholar 

  • Park SW, Kang Y, Sypula JG, Choi J, Oh H, Park Y (2007) An evolutionarily conserved domain of roX2 RNA is sufficient for induction of H4-Lys16 acetylation on the Drosophila X chromosome. Genetics 177:1429–1437

    Article  PubMed  CAS  Google Scholar 

  • Plath K, Mlynarczyk-Evans S, Nusinow DA, Panning B (2002) Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet 36:233–278

    Article  PubMed  CAS  Google Scholar 

  • Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, de la Cruz CC, Otte AP, Panning B, Zhang Y (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131–135

    Article  PubMed  CAS  Google Scholar 

  • Richter L, Bone JR, Kuroda MI (1996) RNA-dependent association of the Drosophila maleless protein with the male X chromosome. Genes Cells 1:325–336

    Article  PubMed  CAS  Google Scholar 

  • Riddle NC, Elgin SC (2006) The dot chromosome of Drosophila: insights into chromatin states and their change over evolutionary time. Chromosome Res 14:405–416

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez MA, Vermaak D, Bayes JJ, Malik HS (2007) Species-specific positive selection of the male-specific lethal complex that participates in dosage compensation in Drosophila. Proc Natl Acad Sci USA 104:15412–15417

    Article  PubMed  CAS  Google Scholar 

  • Sanjuan R, Marin I (2001) Tracing the origin of the compensasome: evolutionary history of DEAH helicase and MYST acetyltransferase gene families. Mol Biol Evol 18:330–343

    Article  PubMed  CAS  Google Scholar 

  • Schoeftner S, Sengupta AK, Kubicek S, Mechtler K, Spahn L, Koseki H, Jenuwein T, Wutz A (2006) Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J 25:3110–3122

    Article  PubMed  CAS  Google Scholar 

  • Scott MJ, Pan LL, Cleland SB, Knox AL, Heinrich J (2000) MSL1 plays a central role in assembly of the MSL complex, essential for dosage compensation in Drosophila. EMBO J 19:144–155

    Article  PubMed  CAS  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847

    Article  PubMed  CAS  Google Scholar 

  • Smith ER, Pannuti A, Gu W, Steurnagel A, Cook RG, Allis CD, Lucchesi JC (2000) The drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol Cell Biol 20:312–318

    Article  PubMed  CAS  Google Scholar 

  • Smith ER, Allis CD, Lucchesi JC (2001) Linking global histone acetylation to the transcription enhancement of X-chromosomal genes in Drosophila males. J Biol Chem 276:31483–31486

    Article  PubMed  CAS  Google Scholar 

  • Smith ER, Cayrou C, Huang R, Lane WS, Cote J, Lucchesi JC (2005) A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol 25:9175–9188

    Article  PubMed  CAS  Google Scholar 

  • Straub T, Grimaud C, Gilfillan GD, Mitterweger A, Becker PB (2008) The chromosomal high-affinity binding sites for the Drosophila dosage compensation complex. PLoS Genet 4:e1000302

    Article  PubMed  Google Scholar 

  • Stuckenholz C, Meller VH, Kuroda MI (2003) Functional redundancy within roX1, a noncoding RNA involved in dosage compensation in Drosophila melanogaster. Genetics 164:1003–1014

    PubMed  CAS  Google Scholar 

  • Sural TH, Peng S, Li B, Workman JL, Park PJ, Kuroda MI (2008) The MSL3 chromodomain directs a key targeting step for dosage compensation of the Drosophila melanogaster X chromosome. Nat Struct Mol Biol 15:1318–1325

    Article  PubMed  CAS  Google Scholar 

  • Taipale M, Rea S, Richter K, Vilar A, Lichter P, Imhof A, Akhtar A (2005) hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol 25:6798–6810

    Article  PubMed  CAS  Google Scholar 

  • Tupy JL, Bailey AM, Dailey G, Evans-Holm M, Siebel CW, Misra S, Celniker SE, Rubin GM (2005) Identification of putative noncoding polyadenylated transcripts in Drosophila melanogaster. Proc Natl Acad Sci USA 102:5495–5500

    Article  PubMed  CAS  Google Scholar 

  • Tweedie S, Ashburner M, Falls K, Leyland P, McQuilton P, Marygold S, Millburn G, Osumi-Sutherland D, Schroeder A, Seal R et al (2009) FlyBase: enhancing Drosophila Gene Ontology annotations. Nucleic Acids Res 37:D555–D559

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zhang W, Jin Y, Johansen J, Johansen KM (2001) The JIL-1 tandem kinase mediates histone H3 phosphorylation and is required for maintenance of chromatin structure in Drosophila. Cell 105:433–443

    Article  PubMed  CAS  Google Scholar 

  • Weiler KS, Wakimoto BT (1995) Heterochromatin and gene expression in Drosophila. Annu Rev Genet 29:577–605

    Article  PubMed  CAS  Google Scholar 

  • Wutz A, Rasmussen TP, Jaenisch R (2002) Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet 30:167–174

    Article  PubMed  CAS  Google Scholar 

  • Yasuhara JC, Wakimoto BT (2006) Oxymoron no more: the expanding world of heterochromatic genes. Trends Genet 22:330–338

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Yang Y, Scott MJ, Pannuti A, Fehr KC, Eisen A, Koonin EV, Fouts DL, Wrightsman R, Manning JE et al (1995) Male-specific lethal 2, a dosage compensation gene of Drosophila, undergoes sex-specific regulation and encodes a protein with a RING finger and a metallothionein-like cysteine cluster. EMBO J 14:2884–2895

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria H. Meller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koya, S.K., Meller, V.H. (2011). roX RNAs and Genome Regulation in Drosophila Melanogaster . In: Ugarkovic, D. (eds) Long Non-Coding RNAs. Progress in Molecular and Subcellular Biology(), vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16502-3_7

Download citation

Publish with us

Policies and ethics