Skip to main content

Gene Regulatory Network Identification from Gene Expression Time Series Data Using Swarm Intelligence

  • Chapter
Handbook of Swarm Intelligence

Part of the book series: Adaptation, Learning, and Optimization ((ALO,volume 8))

  • 3123 Accesses

Abstract

A Gene Regulatory Network (GRN) usually is modelled as a directed graph, where the nodes represent genes and the directed arc from a given node i to node j represents the causal influence of gene i over gene j. The causal influence represented by an arc is enumerated by a signed weight associated with that arc. In this article, we model GRN by a recurrent fuzzy neural network, and attempt to identify the signed weights from the time response data of the gene micro-array. A cost function has been constructed to describe the weight identification as an optimization problem, and Particle Swarm Optimization algorithm has been used to optimize the cost function. The fuzzy membership distribution used to model network weights enhances search efficiency and hence computational overhead in the identification problem. Because of the nonlinearity in causal relationship between genes, there exist multiple solutions to the weight identification problem of GRN. In order to cater for the theoretical best solution, the identification problem has been decoupled into two sub-problems: i) determination of the existence/non-existence about the causal influence, and ii) determination of the sign and magnitude of the influence between any two genes of the network. The solutions obtained from these two sub-problems are then combined to accurately identify the both non-existing connections, and the sign and magnitude of weights to existing connections. Computer simulation reveals that the proposed realization outperforms the most recently reported work in this field in detecting the sign and magnitude and also the structure of the overall network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akike, H.: Information Theory and an extension of the maximum likelihood Principle. In: Proc. Second int’l Symp. Information Theory, pp. 267–281 (1973)

    Google Scholar 

  2. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In: Pac. Symp. Biocomput., pp. 17–28 (1999)

    Google Scholar 

  3. Bar-Joseph, Z.: Analyzing time series gene expression data. Bioinformatics 20(16), 2493–2503 (2004)

    Article  Google Scholar 

  4. Bose, N.K., Liang, P.: Neural Network Fundamentals with Graphs. Algorithms, and Applications, p. 312. McGraw-Hill, New York (1996)

    Google Scholar 

  5. Chen, T., He, H.L., Church, G.M.: Modeling gene expression with differential equations. In: Pac. Symp. Biocomput., vol. 4, pp. 29–40 (1999)

    Google Scholar 

  6. Das, S., Abraham, A., Konar, A.: Metaheuristic Clustering, pp. 73–74. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  7. Datta, D., Choudhuri, S.S., Konar, A., Nagar, A.K., Das, S.: A Recurrent Fuzzy Neural Model of a Gene Regulatory Network for Knowledge Extraction Using Differential Evolution. In: Proc. of IEEE Congress on Evolutionary Computation, Trondheim, Norway, May 18-21 (2009)

    Google Scholar 

  8. Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1976)

    Google Scholar 

  9. De Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. Journal of Computational Biology 9, 67–103

    Google Scholar 

  10. D’haeseleer, P.: Reconstructing Gene Network from Large Scale Gene Expression Data. PhD dissertation, Univ. of New Mexico (2000)

    Google Scholar 

  11. D’haeseleer, P., Wen, X., Fuhrman, S., Somogyi, R.: Linear Modelling of mRNA Expression Levels during CNS Development and Injury. In: Proc. Pacific Symp. Bio. Computing, pp. 41–52 (1999)

    Google Scholar 

  12. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proc. of the Sixth Int. Symp. on Micro Machine and Human Science, Nayoga, Japan (1995)

    Google Scholar 

  13. Epinosa-soto, C., Padilla-Longoria, P., Alvarez-Buylla, E.R.: A Gene Regulatory Network Model for Cell-Fate Determination during Arabidopsis thaliana Flower Development That Is Robust and Recovers Experimental Gene Expression Profiles. In: The Plant Cell. American Society of Plant Biologists, vol. 16, pp. 2923–2939 (November 2004), www.plantcell.org

  14. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian net work to analyze expression data. J. Comp. Biol. 7, 601–620 (2000)

    Article  Google Scholar 

  15. Goldberg, D.E.: Genetic Algorithm in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    Google Scholar 

  16. Hallinan, J., Wiles, J.: Evolving Genetic Regulatory Networks Using an Artificial Genome. In: Proc. Second Asia-Pacific Bioinformatics Conf., vol. 29, pp. 291–296 (2004)

    Google Scholar 

  17. Hallinan, J., Wiles, J.: Asynchronous Dynamics of an Artificial Genetic Regulatory Network. In: Proc. Ninth Int’l Conf. Simulation and Synthesis of Living Systems (2004)

    Google Scholar 

  18. Hassoun, M.H.: Fundamentals of Artificial neural network. MIT Press, Cambridge (1995)

    Google Scholar 

  19. Husmeier, D.: Sensitivity and Specificity of Inferring Genetic Regulatory Interactions from Micro array Experiments with Dynamic Bayesian Networks. Bioinformatics 19(17), 2271–2282 (2003)

    Article  Google Scholar 

  20. Imoto, S., Gota, T., Miyano, S.: Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. In: Pac. Symp. Biocomput., pp. 175–186 (2002)

    Google Scholar 

  21. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  22. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: Proc. Conf. on System, man, and Cybernetics, pp-, pp. 4104–4109 (1997)

    Google Scholar 

  23. Kim, J.-H., Lee, C.-H.: Multi-objective Evolutionary Process for Specific Personalities of artificial Creature. IEEE Computational Intelligence Magazine 3(1) (February 2008)

    Google Scholar 

  24. Kim, J.-H., Lee, K.-H., Kim, Y.-D., Park, I.-W.: Genetic Representation for Evolving Artificial Creature. In: Proc. of the IEEE Congress Evolutionary Computation, pp. 6838–6843 (2006)

    Google Scholar 

  25. Konar, A.: Computational Intelligence Principles, Techniques and Applications, pp. 119–120. Springer, Heidelberg (2009)

    Google Scholar 

  26. Liang, S., Fuhrman, S., Somogyi, R.: Reveal, a general reverse engineering algorithm for inference of genetic network architectures. In: Pac. Symp. Biocomput., pp. 18–29 (1998)

    Google Scholar 

  27. Li, S., Wunsch, D.C., O’Hair, E., Giesselman, M.G.: Extended Kalman filter training of neural network on SIMD parallel machine. Journal of Parallel and Distributed Computing 62, 544–562 (2002)

    Article  MATH  Google Scholar 

  28. Li, X., Gi, Q.: Active Affective State Detection and User-Assistance with Dynamic Bayesian Networks. IEEE Trans. on Systems, Man and Cybernetics, Part-A: Systems and Humans 35(1) (January 2005)

    Google Scholar 

  29. Lng, C., Li, S.Q.: Chaotic spreading sequences with multiple access performance better than random sequences. IEEE transaction on Circuit and System -I, Fundamental Theory and Application 47(3), 394–397 (2000)

    Article  Google Scholar 

  30. May, R.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    Article  Google Scholar 

  31. Magnenat-Thalmann, N., Joslin, C., Berner, U.: Networked Virtual Park. In: Jain, L., Wilde, P.D. (eds.) Practical Applications of Computational Intelligence Techniques. Kluwer Academic, Dordrecht (2001)

    Google Scholar 

  32. Masri, S.F., Smyth, A.W., Chassiakos, A.G., Nakamura, M., Caughey, T.K.: Training Neural Networks By Adaptive Random Search Technique. Journal of Engineering Mechanics 125(2), 123–132 (1999)

    Article  Google Scholar 

  33. Michael De Hoon, J.L., Imota, S., Kobayashi, K., Ogasawara, N., Miyano, S.: Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtills using differential equations. In: Pac. Symp. Biocomput., pp. 17–28 (2003)

    Google Scholar 

  34. Nasimul, N., Hitosi, I.: Inferring Gene Regulatory Networks Using Differential Evolution With Local Search heuristics. IEEE/ACM Transaction on computational biology and bioinformatics 4(4), 634–647 (2007)

    Article  Google Scholar 

  35. Koduru, P., Dong, Z., Das, S., Welch, S.M., Roe, J.: Multi-Objective Evolutionary-Simplex Hybrid Approach for the Optimization of Differential Equation Models of Gene Networks. IEEE Transactions on Evolutionary Computation 12(5), 572–590 (2008)

    Article  Google Scholar 

  36. Perrin, B., Ralaivola, L., Mazurie, A., Battani, S., Mallet, J., d’Alche-Buc, F.: Gene Networks Inference Using Dynamic Bayesian Networks. Bioinformatics 19, 138–148 (2003)

    Article  Google Scholar 

  37. Roychowdhuri, P., Singh, Y.P., Chanskar, R.A.: Dynamic Tunneling Technique for efficient Training of Multilayer Perceptrons. IEEE transaction on Neural Networks 10(1) (January 1999)

    Google Scholar 

  38. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representation by back propagation errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  39. Das, S., Morcos, K., Welch, S.M.: Combining Fuzzy Dominance Based PSO and Gradient Descent for Effective Parameter Estimation of Gene Regulatory Networks. In: Proceedings, IADIS Multi Conference on Computer Science and Information Systems, Algarve, Portugal (Ed. Antonio Palma dos Reis), pp. 3–10 (2009)

    Google Scholar 

  40. Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modelling, BMC Bioinformatics, 8(Suppl 6):S9 (2007), doi:10.1186/1471-2105-8-S6-S9, This article is available from: http://www.biomedcentral.com/1471-2105/8/S6/S9

  41. Somogyi, R., Sniegoski, C.A.: Modeling the complexity of genetic networks: understanding multigenic and pleiotropic regulation. Complexity 1, 45–63 (1996)

    MathSciNet  Google Scholar 

  42. Storn, R., Price, K.: Differential Evolution –A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  43. Storn, R., Price, K.: Differential Evolution – A simple evolution strategy for fast optimisation. Dr. Dobb’s Journal 22(4), 18–24, 78(1997)

    MathSciNet  Google Scholar 

  44. Storn, R., Price, K.: Differential Evolution- A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Technical Report TR-95-012, Berkeley, CA (1995)

    Google Scholar 

  45. Spellman, P.T., Slerlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Molecular Biology of the Cell 9, 3273–3297 (1998)

    Google Scholar 

  46. The Modern Synthesis of Genetics and Evolution Copyright (1993-1997) by Laurence Moran http://www.talkorigins.org/faqs/modern-synthesis.html

  47. VanBogelen, R.A., Greis, K.D., Blumenthal, R.M., Tani, T.H., Matthews, R.G.: Mapping regulatory networks in microbial cells. Trends Microbial. 7, 320–328 (1999)

    Article  Google Scholar 

  48. Van Someren, E., Wessels, L., Reinders, M.: Linear Modeling of Genetic Networks from Experimental Data. In: Proc. Eighth Int’l Conf. Intelligent Systems for Molecular Biology, pp. 355–366 (2000)

    Google Scholar 

  49. Van Someren, E., Wessels, L., Reinders, M.: Genetic Network Models: A Comparative Study. In: Proc. SPIE, Micro-Arrays: Optical Technologies and Informatics, pp. 236–247 (2001)

    Google Scholar 

  50. Vohradsky, J.: Neural Network Model of Gene Expression. The FASEB journal 15, 354–846 (2001)

    Article  Google Scholar 

  51. Wahde, M., Hartz, J.: Coarse-grained reverse engineering of genetic regulatory networks. Biosystems 55, 129–136 (2000)

    Article  Google Scholar 

  52. Wahde, M., Hartz, J.: Modeling genetic regulatory dynamics in neural development. Journal of computational Biology 8, 429–442 (2001)

    Article  Google Scholar 

  53. Werbos, P.: Back propagation through time: what it does and how to do it. Proceedings of IEEE 78(10), 1550–1560 (1990)

    Article  Google Scholar 

  54. Wessels, L.F.A., Van Someren, E.P., Reinders, M.J.T.: A comparison of genetic network models. In: Pac. Symp. Biocomput., pp. 508–519 (2001)

    Google Scholar 

  55. Cai, X., Das, S., Welch, S.M., Koduru, P.: Simultaneous Structure Discovery and Parameter Estimation in Gene Networks Using a Multi-objective GP-PSO Hybrid Approach. International Journal of Bioinformatics Research and Applications 5(3), 254–268 (2009)

    Article  Google Scholar 

  56. Xu, R., Wunsch II, D.C., Frank, R.L.: Inference of genetic regulatory networks with recurrent neural network models using particle swarm optimization. IEEE/ACM transaction on computational biology and bioinformatics 4(4), 681–692 (2007)

    Article  Google Scholar 

  57. Xu, R., Hu, X., Wunsch, D.: Inference of genetic regulatory networks with recurrent neural network models. In: Proceedings of the 26th Annual International Conference on Engineering in Medicine and Biology Society, EMBC 2004, September 1-5, vol. 2, 4, pp. 2905–2908 (2004)

    Google Scholar 

  58. Xu, R., Venayagamoorthy, G.K., Wunsch II, D.C.: Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization. Science Direct, Neural networks 20, 917–927 (2007), www.sciencedirect.com

    Article  MATH  Google Scholar 

  59. Zhang, Y., Deng, Z., Jia, P.: A new dynamic Bayesian network for integrating multiple data in estimating gene networks. In: Third International Conference on Natural Computation (ICNC 2007) (2007)

    Google Scholar 

  60. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans. on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

  61. Kros, J.F., Lin, M., Brown, M.L.: Effects of neural network s-Sigmoid function on KDD in the presence of imprecise data. Science Direct, Computer s & Operations Research 33(11), 3136–3194 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Datta, D., Konar, A., Das, S., Panigrahi, B.K. (2011). Gene Regulatory Network Identification from Gene Expression Time Series Data Using Swarm Intelligence. In: Panigrahi, B.K., Shi, Y., Lim, MH. (eds) Handbook of Swarm Intelligence. Adaptation, Learning, and Optimization, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17390-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17390-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17389-9

  • Online ISBN: 978-3-642-17390-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics