Skip to main content

Simulating Sparse Hamiltonians with Star Decompositions

  • Conference paper
Theory of Quantum Computation, Communication, and Cryptography (TQC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6519))

Included in the following conference series:

Abstract

We present an efficient algorithm for simulating the time evolution due to a sparse Hamiltonian. In terms of the maximum degree d and dimension N of the space on which the Hamiltonian H acts for time t, this algorithm uses (d 2(d + log* N) ∥ Ht ∥ )1 + o(1) queries. This improves the complexity of the sparse Hamiltonian simulation algorithm of Berry, Ahokas, Cleve, and Sanders, which scales like (d 4(log* N) ∥ Ht ∥ )1 + o(1). To achieve this, we decompose a general sparse Hamiltonian into a small sum of Hamiltonians whose graphs of non-zero entries have the property that every connected component is a star, and efficiently simulate each of these pieces.

Work supported by MITACS, NSERC, QuantumWorks, and the US ARO/DTO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lloyd, S.: Universal quantum simulators. Science 273(5278), 1073–1078 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aharonov, D., Ta-Shma, A.: Adiabatic quantum state generation and statistical zero knowledge. In: Proc. 35th STOC, pp. 20–29. ACM, New York (2003)

    Google Scholar 

  3. Berry, D., Ahokas, G., Cleve, R., Sanders, B.: Efficient quantum algorithms for simulating sparse Hamiltonians. Commun. Math. Phys. 270(2), 359–371 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  5. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution (2000), ArXiv preprint quant-ph/0001106

    Google Scholar 

  6. Farhi, E., Gutmann, S.: Analog analogue of a digital quantum computation. Phys. Rev. A 57(4), 2403–2406 (1998)

    Article  Google Scholar 

  7. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. In: Proc. 35th STOC, pp. 59–68. ACM, New York (2003)

    Google Scholar 

  8. Farhi, E., Goldstone, J., Gutmann, S.: A Quantum Algorithm for the Hamiltonian NAND Tree. Theory of Computing 4, 169–190 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Childs, A.M.: Quantum information processing in continuous time. PhD thesis, Massachusetts Institute of Technology (2004)

    Google Scholar 

  10. Childs, A.M.: On the Relationship Between Continuous- and Discrete-Time Quantum Walk. Commun. Math. Phys. 294(2), 581–603 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berry, D.W., Childs, A.M.: The quantum query complexity of implementing black-box unitary transformations (2009), ArXiv preprint arXiv:0910.4157

    Google Scholar 

  12. Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks. Distrib. Comput. 14(2), 97–100 (2001)

    Article  Google Scholar 

  13. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal parallel list ranking. Inf. Control 70(1), 32–53 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goldberg, A.V., Plotkin, S.A., Shannon, G.E.: Parallel symmetry-breaking in sparse graphs. SIAM J. Discrete Math. 1(4), 434–446 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Childs, A., Kothari, R.: Limitations on the simulation of non-sparse Hamiltonians. Quantum Information and Computation 10, 669–684 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Childs, A.M., Kothari, R. (2011). Simulating Sparse Hamiltonians with Star Decompositions. In: van Dam, W., Kendon, V.M., Severini, S. (eds) Theory of Quantum Computation, Communication, and Cryptography. TQC 2010. Lecture Notes in Computer Science, vol 6519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18073-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18073-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18072-9

  • Online ISBN: 978-3-642-18073-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics