Skip to main content

A Bacterial Backbone: Magnetosomes in Magnetotactic Bacteria

  • Chapter
  • First Online:
Metal Nanoparticles in Microbiology

Abstract

Magnetosomes are intracellular, tens of nanometer-sized, membrane-bounded crystals of the magnetic minerals magnetite (Fe3O4) and greigite (Fe3S4) synthesized by a diverse group of prokaryotes termed the magnetotactic bacteria. These unusual microorganisms biomineralize magnetosomes via a biologically controlled biomineralization process where the composition, size and morphology of the mineral crystals are under fine chemical, biochemical and genetic controls. Magnetosomes are most often arranged as a chain within the cell and they provide a permanent magnetic dipole moment to the cell causing it to passively align along magnetic field lines like a compass needle. Magnetotaxis is the result of this passive alignment while the cell swims. The magnetotactic bacteria presumably utilize magnetotactic in conjunction with chemotaxis (e.g., aerotaxis) to locate and maintain an optimal position in vertical chemical and/or redox gradients in natural habitats. The locus of biomineralization of magnetosome crystals is the magnetosome membrane vesicle which contains proteins that are unique to it that are not found in other parts of the cell. The roles of some of these magnetosome membrane proteins in the biomineralization process and the construction of the magnetosome chain have been determined while the roles of most have not. The genes that encode for magnetosome membrane proteins are located in clusters in a magnetosome gene island in many magnetotactic bacteria that also contain a number of mobile elements suggesting the island can be transferred to different bacteria via horizontal gene transfer. Magnetosome crystals possess novel magnetic properties that have been exploited in numerous applications and are important in biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu F, Martins JL, Silveira TS, Keim CN, Lins de Barros HGP, Filho FJG, Lins U (2007) ‘Candidatus Magnetoglobus multicellularis’, a multicellular, magnetotactic prokaryote from a hypersaline environment. Int J Syst Evol Microbiol 57:1318–1322

    PubMed  CAS  Google Scholar 

  • Amann R, Peplies J, Schüler D (2007) Diversity and taxonomy of magnetotactic bacteria. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Heidelberg, pp 25–36

    Google Scholar 

  • Amemiya Y, Tanaka T, Yoza B, Matsunaga T (2005) Novel detection system for biomolecules using nano-sized bacterial magnetic particles and magnetic force microscopy. J Biotechnol 120:308–314

    PubMed  CAS  Google Scholar 

  • Amemiya Y, Arakaki A, Staniland SS, Tanaka T, Matsunaga T (2007) Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials 28:5381–5389

    PubMed  CAS  Google Scholar 

  • Arakaki A, Webb J, Matsunaga T (2003) A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J Biol Chem 278:8745–8750

    PubMed  CAS  Google Scholar 

  • Arakaki A, Hideshima S, Nakagawa T, Niwa D, Tanaka T, Matsunaga T, Osaka T (2004) Detection of biomolecular interaction between biotin and streptavidin on a self-assembled monolayer using magnetic nanoparticles. Biotechnol Bioeng 88:543–546

    PubMed  CAS  Google Scholar 

  • Arató B, Szányi Z, Flies C, Schüler D, Frankel RB, Buseck PR, Pósfai M (2005) Crystal-size and shape distributions of magnetite from uncultured magnetotactic bacteria as a potential biomarker. Am Mineral 90:1233–1240

    Google Scholar 

  • Balkwill DL, Maratea D, Blakemore RP (1980) Ultrastructure of a magnetic spirillum. J Bacteriol 141:1399–1408

    PubMed  CAS  Google Scholar 

  • Bazylinski DA (1995) Structure and function of the bacterial magnetosome. ASM News 61:337–343

    Google Scholar 

  • Bazylinski DA, Blakemore RP (1983a) Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum. Appl Environ Microbiol 46:1118–1124

    PubMed  CAS  Google Scholar 

  • Bazylinski DA, Blakemore RP (1983b) Nitrogen fixation (acetylene reduction) in Aquaspirillum magnetotacticum. Curr Microbiol 9:305–308

    CAS  Google Scholar 

  • Bazylinski DA, Frankel RB (2000a) Magnetic iron oxide and iron sulfide minerals within organisms. In: Baeuerlein E (ed) Biomineralization: from biology to biotechnology and medical application. Wiley-VCH, Weinheim, pp 25–46

    Google Scholar 

  • Bazylinski DA, Frankel RB (2000b) Biologically controlled mineralization of magnetic iron minerals by magnetotactic bacteria. In: Lovley D (ed) Environmental microbe-mineral interactions. ASM, Washington, DC, pp 109–144

    Google Scholar 

  • Bazylinski DA, Frankel RB (2003) Biologically controlled mineralization in prokaryotes. Rev Mineral Geochem 54:217–247

    CAS  Google Scholar 

  • Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–30

    PubMed  CAS  Google Scholar 

  • Bazylinski DA, Moskowitz BM (1997) Microbial biomineralization of magnetic iron minerals: microbiology, magnetism and environmental significance. Rev Mineral 35:181–223

    CAS  Google Scholar 

  • Bazylinski DA, Schübbe S (2007) Controlled biomineralization by and applications of magnetotactic bacteria. Adv Appl Microbiol 62:21–62

    PubMed  CAS  Google Scholar 

  • Bazylinski DA, Williams TJ (2007) Ecophysiology of magnetotactic bacteria. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Heidelberg, pp 37–75

    Google Scholar 

  • Bazylinski DA, Garratt-Reed AJ, Abedi A, Frankel RB (1993a) Copper association with iron sulfide magnetosomes in a magnetotactic bacterium. Arch Microbiol 160:35–42

    CAS  Google Scholar 

  • Bazylinski DA, Heywood BR, Mann S, Frankel RB (1993b) Fe3O4 and Fe3S4 in a bacterium. Nature 366:218

    Google Scholar 

  • Bazylinski DA, Garratt-Reed AJ, Frankel RB (1994) Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microsc Res Tech 27:389–401

    PubMed  CAS  Google Scholar 

  • Bazylinski DA, Frankel RB, Heywood BR, Mann S, King JW, Donaghay PL, Hanson AK (1995) Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. Appl Environ Microbiol 61:3232–3239

    PubMed  CAS  Google Scholar 

  • Bazylinski DA, Dean AJ, Schüler D, Phillips EJP, Lovley DR (2000) N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environ Microbiol 2:266–273

    PubMed  CAS  Google Scholar 

  • Bazylinski DA, Dean AJ, Williams TJ, Kimble-Long L, Middleton SL, Dubbels BL (2004) Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch Microbiol 182:373–387

    PubMed  CAS  Google Scholar 

  • Bellini S (2009a) On a unique behavior of freshwater bacteria. Chin J Oceanol Limn 27:3–5

    Google Scholar 

  • Bellini S (2009b) Further studies on “magnetosensitive bacteria”. Chin J Oceanol Limn 27:6–12

    Google Scholar 

  • Blakemore RP (1975) Magnetotactic bacteria. Science 190:377–379

    PubMed  CAS  Google Scholar 

  • Blakemore RP, Frankel RB, Kalmijn AJ (1980) South-seeking magnetotactic bacteria in the southern-hemisphere. Nature 286:384–385

    Google Scholar 

  • Blakemore RP, Short KA, Bazylinski DA, Rosenblatt C, Frankel RB (1985) Microaerobic conditions are required for magnetite synthesis within Aquaspirillum magnetotacticum. Geomicrobiol J 4:53–71

    CAS  Google Scholar 

  • Blum G, Ott M, Lischewski A, Ritter A, Imrich H, Tschäpe H, Hacker J (1994) Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun 62:606–614

    PubMed  CAS  Google Scholar 

  • Buseck PR, Dunin-Borkowski RE, Devouard B, Frankel RB, McCartney MR, Midgley PA, Pósfai M, Weyland M (2001) Magnetite morphology and life on mars. Proc Natl Acad Sci USA 98:13490–13495

    PubMed  CAS  Google Scholar 

  • Butler RF, Banerjee SK (1975) Theoretical single-domain grain size range in magnetite and titanomagnetite. J Geophys Res 80:4049–4058

    CAS  Google Scholar 

  • Chang SBR, Kirschvink JL (1989) Magnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization. Annu Rev Earth Planet Sci 17:169–195

    CAS  Google Scholar 

  • Chang SBR, Stolz JF, Kirschvink JL, Awramik SM (1989) Biogenic magnetite in stromatolites 2. Occurrence in ancient sedimentary environments. Precamb Res 43:305–315

    CAS  Google Scholar 

  • Clemett SJ, Thomas-Keprta KL, Shimmin J, Morphew M, McIntosh JR, Bazylinski DA, Kirschvink JL, McKay DS, Wentworth SJ, Vali H, Gibson EK Jr, Romanek CS (2002) Crystal morphology of MV-1 magnetite. Am Mineral 87:1727–1730

    CAS  Google Scholar 

  • Cox BL, Popa R, Bazylinski DA, Lanoil B, Douglas S, Belz A, Engler DL, Nealson KH (2002) Organization and elemental analysis of P-, S-, and Fe-rich inclusions in a population of freshwater magnetococci. Geomicrobiol J 19:387–406

    CAS  Google Scholar 

  • DeLong EF, Frankel RB, Bazylinski DA (1993) Multiple evolutionary origins of magnetotaxis in bacteria. Science 259:803–806

    PubMed  CAS  Google Scholar 

  • Devouard B, Pósfai M, Hua X, Bazylinski DA, Frankel RB, Buseck PR (1998) Magnetite from magnetotactic bacteria: size distribution and twinning. Am Mineral 83:1387–1398

    CAS  Google Scholar 

  • Diaz-Ricci JC, Kirschvink JL (1992) Magnetic domain state and coercivity predictions for biogenic greigite (Fe3S4): a comparison of theory with magnetosome observations. J Geophys Res 97:17309–17315

    Google Scholar 

  • Dobrindt U, Hochhut B, Hentschel U, Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414–424

    PubMed  CAS  Google Scholar 

  • Dubbels BL, DiSpirito AA, Morton JD, Semrau JD, Neto JN, Bazylinski DA (2004) Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV-1. Microbiology 150:2931–2945

    PubMed  CAS  Google Scholar 

  • Dunin-Borkowski RE, McCartney MR, Frankel RB, Bazylinski DA, Pósfai M, Buseck PR (1998) Magnetic microstructure of magnetotactic bacteria by electron holography. Science 282:1868–1870

    PubMed  CAS  Google Scholar 

  • Dunin-Borkowski RE, McCartney MR, Pósfai M, Frankel RB, Bazylinski DA, Buseck PR (2001) Off axis electron holography of magnetotactic bacteria: magnetic microstructure of strains MV-1 and MS-1. Eur J Mineral 13:671–684

    CAS  Google Scholar 

  • Fanning AS, Anderson JM (1996) Protein-protein interactions: PDZ domain networks. Curr Biol 6:1385–1388

    PubMed  CAS  Google Scholar 

  • Farina M, Motta de Esquivel D, Lins de Barros HGP (1990) Magnetic iron-sulphur crystals from a magnetotactic microorganism. Nature 343:256–258

    CAS  Google Scholar 

  • Frankel RB (1984) Magnetic guidance of organisms. Annu Rev Biophys Bioeng 13:85–103

    PubMed  CAS  Google Scholar 

  • Frankel RB, Bazylinski DA (1994) Magnetotaxis and magnetic particles in bacteria. Hyperfine Interact 90:135–142

    CAS  Google Scholar 

  • Frankel RB, Bazylinski DA (2003) Biologically induced mineralization by bacteria. Rev Mineral 54:217–247

    Google Scholar 

  • Frankel RB, Bazylinski DA (2006) How magnetotactic bacteria make magnetosomes queue up. Trends Microbiol 14:329–331

    PubMed  CAS  Google Scholar 

  • Frankel RB, Bazylinski DA (2009) Magnetosomes and magneto-aerotaxis. Contrib Microbiol 16:182–193

    PubMed  Google Scholar 

  • Frankel RB, Blakemore RP, Wolfe RS (1979) Magnetite in freshwater magnetic bacteria. Science 203:1355–1357

    PubMed  CAS  Google Scholar 

  • Frankel RB, Papaefthymiou GC, Blakemore RP, O’Brien W (1983) Fe3O4 precipitation in magnetotactic bacteria. Biochim Biophys Acta 763:147–159

    CAS  Google Scholar 

  • Frankel RB, Bazylinski DA, Johnson MS, Taylor BL (1997) Magneto-aerotaxis in marine coccoid bacteria. Biophys J 73:994–1000

    PubMed  CAS  Google Scholar 

  • Frankel RB, Zhang JP, Bazylinski DA (1998) Single magnetic domains in magnetotactic bacteria. J Geophys Res Solid Earth 103:30601–30604

    Google Scholar 

  • Frankel RB, Williams TJ, Bazylinski DA (2007) Magneto-aerotaxis. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Heidelberg, pp 1–24

    Google Scholar 

  • Fukuda Y, Okamura Y, Takeyama H, Matsunaga T (2006) Dynamic analysis of a genomic island in Magnetospirillum sp. strain AMB-1 reveals how magnetosome synthesis developed. FEBS Lett 580:801–812

    PubMed  CAS  Google Scholar 

  • Geelhoed JS, Sorokin DY, Epping E, Tourova TP, Banciu HL, Muyzer G, Stams AJM, van Loosdrecht MCM (2009) Microbial sulfide oxidation in the oxic-anoxic transition zone of freshwater sediment: involvement of lithoautotrophic Magnetospirillum strain J10. FEMS Microbiol Ecol 70:54–65

    PubMed  CAS  Google Scholar 

  • Geelhoed JS, Kleerebezem R, Sorokin DY, Stams AJM, van Loosdrecht MCM (2010) Reduced inorganic sulfur oxidation supports autotrophic and mixotrophic growth of Magnetspirillum strain J10 and Magnetospirillum gryphiswaldense. Environ Microbiol 12:1031–1040

    PubMed  CAS  Google Scholar 

  • Gorby YA (1989) Regulation of magnetosome biogenesis by oxygen and nitrogen. PhD Dissertation, University of New Hampshire, Durham, New Hampshire

    Google Scholar 

  • Gorby YA, Beveridge TJ, Blakemore RP (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170:834–841

    PubMed  CAS  Google Scholar 

  • Grünberg K, Wawer C, Tebo BM, Schüler D (2001) A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol 67:4573–4582

    PubMed  Google Scholar 

  • Grünberg K, Müller EC, Otto A, Reszka R, Linder D, Kube M, Reinhardt R, Schüler D (2004) Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 70:1040–1050

    PubMed  Google Scholar 

  • Heyen U, Schüler D (2003) Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl Microbiol Biotechnol 61:536–544

    PubMed  CAS  Google Scholar 

  • Heywood BR, Bazylinski DA, Garratt-Reed AJ, Mann S, Frankel RB (1990) Controlled biosynthesis of greigite (Fe3S4) in magnetotactic bacteria. Naturwissenschaften 77:536–538

    Google Scholar 

  • Heywood BR, Mann S, Frankel RB (1991) Structure, morphology and growth of biogenic greigite (Fe3S4). In: Alpert M, Calvert P, Frankel RB, Rieke P, Tirrell D (eds) Materials synthesis based on biological processes. Materials Research Society, Pittsburgh, pp 93–108

    Google Scholar 

  • Jimenez-Lopez C, Romanek CS, Bazylinski DA (2010) Magnetite as a prokaryotic biomarker: a review. J Geophys Res-Biogeo 115:G00G03

    Google Scholar 

  • Jogler C, Schüler D (2007) Genetic analysis of magnetosome biomineralization. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Heidelberg, pp 133–161

    Google Scholar 

  • Jogler C, Kube M, Schübbe S, Ullrich S, Teeling H, Bazylinski DA, Reinhardt R, Schüler D (2009a) Comparative analysis of magnetosome gene clusters in magnetotactic bacteria provides further evidence for horizontal gene transfer. Environ Microbiol 15:1267–1277

    Google Scholar 

  • Jogler C, Lin W, Meyerdierks A, Kube M, Katzmann E, Flies C, Pan Y, Amann R, Reinhardt R, Schüler D (2009b) Toward cloning of the magnetotactic metagenome: identification of magnetosome island gene clusters in uncultivated magnetotactic bacteria from different aquatic sediments. Appl Environ Microbiol 75:3972–3979

    PubMed  CAS  Google Scholar 

  • Kawaguchi R, Burgess JG, Sakaguchi T, Takeyama H, Thornhill RH, Matsunaga T (1995) Phylogenetic analysis of a novel sulfate-reducing magnetic bacterium, RS-1, demonstrates its membership of the δ-Proteobacteria. FEMS Microbiol Lett 126:277–282

    PubMed  CAS  Google Scholar 

  • Keim CN, Abreu F, Lins U, Lins de Barros HGP, Farina M (2004a) Cell organization and ultrastructure of a magnetotactic multicellular organism. J Struct Biol 145:254–262

    PubMed  Google Scholar 

  • Keim CN, Martins JL, Abreu F, Rosado AS, Lins de Barros HGP, Borojevic R, Lins U, Farina M (2004b) Multicellular life cycle of magnetotactic multicellular prokaryotes. FEMS Microbiol Lett 240:203–208

    PubMed  CAS  Google Scholar 

  • Keim CM, Lins U, Farina M (2009) Manganese in biogenic magnetite crystals from magnetotactic bacteria. FEMS Microbiol Lett 292:250–253

    PubMed  CAS  Google Scholar 

  • Komeili A (2007) Cell biology of magnetosome formation. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Heidelberg, pp 163–174

    Google Scholar 

  • Komeili A, Vali H, Beveridge TJ, Newman DK (2004) Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc Natl Acad Sci USA 101:3839–3844

    PubMed  CAS  Google Scholar 

  • Komeili A, Li Z, Newman DK, Jensen GJ (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242–245

    PubMed  CAS  Google Scholar 

  • Kopp RE, Kirschvink JL (2008) The identification and biogeochemical interpretation of fossil magnetotactic bacteria. Earth Sci Rev 86:42–61

    Google Scholar 

  • Kuhara M, Takeyama H, Tanaka T, Matsunaga T (2004) Magnetic cell separation using antibody binding with protein A expressed on bacterial magnetic particles. Anal Chem 76:6207–6213

    PubMed  CAS  Google Scholar 

  • Lang C, Schüler D (2006) Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes. J Phys Condens Mater 18:S2815–S2828

    CAS  Google Scholar 

  • Lang C, Schüler D, Faivre D (2007) Synthesis of magnetite nanoparticles for bio- and nanotechnology: genetic engineering and biomimetics of bacterial magnetosomes. Macromol Biosci 7:144–151

    PubMed  CAS  Google Scholar 

  • Lefèvre CT, Abreu F, Lins U, Bazylinski DA (2010a) Non-magnetotactic multicellular prokaryotes from low saline, nonmarine aquatic environments and their unusual negative phototactic behavior. Appl Environ Microbiol 76:3220–3227

    PubMed  Google Scholar 

  • Lefèvre CT, Abreu F, Schmidt ML, Lins U, Frankel RB, Hedlund BP, Bazylinski DA (2010b) Moderately thermophilic magnetotactic bacteria from hot springs in Nevada USA. Appl Environ Microbiol 76:3740–3743

    PubMed  Google Scholar 

  • Lefèvre CT, Viloria N, Pósfai M, Frankel RB, Bazylinski DA (2011) Novel magnetite-producing magnetotactic bacteria phylogenetically affiliated with the Gammaproteobacteria class. ISME J Submitted for publication

    Google Scholar 

  • Lins U, McCartney MR, Farina M, Buseck PR, Frankel RB (2005) Crystal habits and magnetic microstructures of magnetosomes in coccoid magnetotactic bacteria. Appl Environ Microbiol 71:4902–4905

    PubMed  CAS  Google Scholar 

  • Lins U, Keim CN, Evans FF, Buseck PR, Farina M (2007) Magnetite (Fe3O4) and greigite (Fe3S4) crystals in multicellular magnetotactic prokaryotes. Geomicrobiol J 24:43–50

    CAS  Google Scholar 

  • Lipinska B, Fayet O, Baird L, Georgopoulos C (1989) Identification, characterization, and mapping of the Escherichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures. J Bacteriol 171:1574–1584

    PubMed  CAS  Google Scholar 

  • Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    PubMed  CAS  Google Scholar 

  • Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774

    PubMed  CAS  Google Scholar 

  • Mahillon J, Leonard C, Chandler M (1999) IS elements as constituents of bacterial genomes. Res Microbiol 150:675–687

    PubMed  CAS  Google Scholar 

  • Mann S, Frankel RB, Blakemore RP (1984a) Structure, morphology and crystal growth of bacterial magnetite. Nature 310:405–407

    Google Scholar 

  • Mann S, Moench TT, Williams RJP (1984b) A high resolution electron microscopic investigation of bacterial magnetite. Implications for crystal growth. Proc R Soc Lond Ser B 221:385–393

    CAS  Google Scholar 

  • Mann S, Sparks NHC, Blakemore RP (1987a) Ultrastructure and characterization of anisotropic inclusions in magnetotactic bacteria. Proc R Soc Lond Ser B 231:469–476

    CAS  Google Scholar 

  • Mann S, Sparks NHC, Blakemore RP (1987b) Structure, morphology and crystal growth of anisotropic magnetite crystals in magnetotactic bacteria. Proc R Soc Lond Ser B 231:477–487

    CAS  Google Scholar 

  • Mann S, Sparks NHC, Frankel RB, Bazylinski DA, Jannasch HW (1990) Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature 343:258–260

    CAS  Google Scholar 

  • Maruyama K, Takeyama H, Nemoto E, Tanaka T, Yoda K, Matsunaga T (2004) Single nucleotide polymorphism detection in aldehyde dehydrogenase 2 (ALDH2) gene using bacterial magnetic particles based on dissociation curve analysis. Biotechnol Bioeng 87:687–694

    PubMed  CAS  Google Scholar 

  • Matsunaga T (1991) Applications of bacterial magnets. Trends Biotechnol 9:91–95

    PubMed  CAS  Google Scholar 

  • Matsunaga T, Arakaki A (2007) Molecular bioengineering of bacterial magnetic particles for biotechnological applications. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Heidelberg, pp 227–254

    Google Scholar 

  • Matsunaga T, Kamiya S (1987) Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization. Appl Microbiol Biotechnol 26:328–332

    CAS  Google Scholar 

  • Matsunaga T, Takeyama H (1998) Biomagnetic nanoparticle formation and application. Supramol Sci 5:391–394

    CAS  Google Scholar 

  • Matsunaga T, Tadokoro F, Nakamura N (1990) Mass culture of magnetic bacteria and their application to flow type immunoassays. IEEE Trans Magn 26:1557–1559

    CAS  Google Scholar 

  • Matsunaga T, Higashi Y, Tsujimura N (1997) Drug delivery by magnetoliposomes containing bacterial magnetic particles. Cell Eng 2:7–11

    CAS  Google Scholar 

  • Matsunaga T, Sato R, Kamiya S, Tanaka T, Takeyama H (1999) Chemiluminescence enzyme immunoassay using protein A-bacterial magnetite complex. J Magn Magn Mater 194:126–131

    CAS  Google Scholar 

  • Matsunaga T, Togo H, Kikuchi T, Tanaka T (2000a) Production of luciferase-magnetic particle complex by recombinant Magnetospirillum sp. AMB-1. Biotechnol Bioeng 70:704–709

    PubMed  CAS  Google Scholar 

  • Matsunaga T, Tsujimura N, Okamura Y, Takeyama H (2000b) Cloning and characterization of a gene, mpsA, encoding a protein associated with intracellular magnetic particles from Magnetospirillum sp. strain AMB-1. Biochem Biophys Res Commun 268:932–937

    PubMed  CAS  Google Scholar 

  • Matsunaga T, Arakaki A, Takahoko M (2002) Preparation of luciferase-bacterial magnetic particle complex by artificial integration of MagA-luciferase fusion protein into the bacterial magnetic particle membrane. Biotechnol Bioeng 77:614–618

    PubMed  CAS  Google Scholar 

  • Matsunaga T, Okamura Y, Fukuda Y, Wahyudi AT, Murase Y, Takeyama H (2005) Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res 12:157–166

    PubMed  CAS  Google Scholar 

  • McCartney MR, Lins U, Farina M, Buseck PR, Frankel RB (2001) Magnetic microstructure of bacterial magnetite by electron holography. Eur J Mineral 13:685–689

    CAS  Google Scholar 

  • McKay DS, Gibson EK Jr, Thomas-Keprta KL, Vali H, Romanek CS, Clemett SJ, Chillier XD, Maechling CR, Zare RN (1996) Search for past life on mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273:924–930

    PubMed  CAS  Google Scholar 

  • Meldrum FC, Heywood BR, Mann S, Frankel RB, Bazylinski DA (1993a) Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium. Proc R Soc Lond Ser B 251:231–236

    Google Scholar 

  • Meldrum FC, Heywood BR, Mann S, Frankel RB, Bazylinski DA (1993b) Electron microscopy study of magnetosomes in two cultured vibrioid magnetotactic bacteria. Proc R Soc Lond Ser B 251:237–242

    Google Scholar 

  • Moench TT (1988) Biliphococcus magnetotacticus gen. nov. sp. nov., a motile, magnetic coccus. Antonie van Leeuwenhoek 54:483–496

    PubMed  CAS  Google Scholar 

  • Moskowitz BM (1995) Biomineralization of magnetic minerals. Rev Geophys Suppl 33:123–128

    Google Scholar 

  • Moskowitz BM, Bazylinski DA, Egli R, Frankel RB, Edwards KJ (2008) Magnetic properties of marine magnetotactic bacteria in a seasonally stratified coastal pond (Salt Pond, MA, USA). Geophys J Int 174:75–92

    CAS  Google Scholar 

  • Nakamura N, Matsunaga T (1993) Highly sensitive detection of allergen using bacterial magnetic particles. Anal Chim Acta 281:585–589

    CAS  Google Scholar 

  • Nakamura N, Hashimoto K, Matsunaga T (1991) Immunoassay method for the determination of immunoglobulin G using bacterial magnetic particles. Anal Chem 63:268–272

    PubMed  CAS  Google Scholar 

  • Nakamura N, Burgess JG, Yagiuda K, Kudo S, Sakaguchi T, Matsunaga T (1993) Detection and removal of Escherichia coli using fluorescein isothiocyanate conjugated monoclonal antibody immobilized on bacterial magnetic particles. Anal Chem 65:2036–2039

    PubMed  CAS  Google Scholar 

  • Nakamura C, Burgess JG, Sode K, Matsunaga T (1995a) An iron-regulated gene, magA, encoding an iron transport protein of Magnetospirillum sp. strain AMB-1. J Biol Chem 270:28392–28396

    PubMed  CAS  Google Scholar 

  • Nakamura C, Kikuchi T, Burgess JG, Matsunaga T (1995b) Iron-regulated expression and membrane localization of the MagA protein in Magnetospirillum sp. strain AMB-1. J Biochem (Tokyo) 118:23–27

    CAS  Google Scholar 

  • Nakayama H, Arakaki A, Maruyama K, Takeyama H, Matsunaga T (2003) Single-nucleotide polymorphism analysis using fluorescence resonance energy transfer between DNA-labeling fluorophore, fluorescein isothiocyanate, and DNA intercalator, POPO-3, on bacterial magnetic particles. Biotechnol Bioeng 84:96–102

    PubMed  CAS  Google Scholar 

  • Nakazawa H, Arakaki A, Narita-Yamada S, Yashiro I, Jinno K, Aoki N, Tsuruyama A, Okamura Y, Tanikawa S, Fujita N, Takeyama H, Matsunaga T (2009) Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria. Genome Res 19:1801–1808

    PubMed  CAS  Google Scholar 

  • Okamura Y, Takeyama H, Matsunaga T (2001) A magnetosome-specific GTPase from the magnetic bacterium Magnetospirillum magneticum AMB-1. J Biol Chem 276:48183–48188

    PubMed  CAS  Google Scholar 

  • Okuda Y, Fukumori Y (2001) Expression and characterization of a magnetosome-associated protein, TPR-containing Mam22, in Escherichia coli. FEBS Lett 491:169–173

    PubMed  CAS  Google Scholar 

  • Okuda Y, Denda K, Fukumori Y (1996) Cloning and sequencing of a gene encoding a new member of the tetratricopeptide protein family from magnetosomes of Magnetospirillum magnetotacticum. Gene 171:99–102

    PubMed  CAS  Google Scholar 

  • Ota H, Takeyama H, Nakayama H, Katoh T, Matsunaga T (2003) SNP detection in transforming growth factor-beta1 gene using bacterial magnetic particles. Biosens Bioelectron 18:683–687

    PubMed  CAS  Google Scholar 

  • Palache C, Berman H, Frondel C (1944) Dana’s system of mineralogy. Wiley, New York

    Google Scholar 

  • Pallen MJ, Wren BW (1997) The HtrA family of serine proteases. Mol Microbiol 26:209–221

    PubMed  CAS  Google Scholar 

  • Paulsen IT, Park JH, Choi PS, Saier MH Jr (1997) A family of Gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from Gram-negative bacteria. FEMS Microbiol Lett 156:1–8

    PubMed  CAS  Google Scholar 

  • Penninga I, deWaard H, Moskowitz BM, Bazylinski DA, Frankel RB (1995) Remanence curves for individual magnetotactic bacteria using a pulsed magnetic field. J Magn Magn Mater 149:279–286

    CAS  Google Scholar 

  • Ponting CC, Phillips C (1996) Rapsyn’s knobs and holes: eight tetratrico peptide repeats. Biochem J 314:1053–1054

    PubMed  CAS  Google Scholar 

  • Pósfai M, Buseck PR, Bazylinski DA, Frankel RB (1998a) Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. Science 280:880–883

    PubMed  Google Scholar 

  • Pósfai M, Buseck PR, Bazylinski DA, Frankel RB (1998b) Iron sulfides from magnetotactic bacteria: structure, composition, and phase transitions. Am Mineral 83:1469–1481

    Google Scholar 

  • Pósfai M, Cziner K, Márton E, Márton P, Buseck PR, Frankel RB, Bazylinski DA (2001) Crystal-size distributions and possible biogenic origin of Fe sulfides. Eur J Mineral 13:691–703

    Google Scholar 

  • Pradel N, Santini CL, Bernadac A, Fukumori Y, Wu LF (2006) Biogenesis of actin-like bacterial cytoskeletal filaments destined for positioning prokaryotic magnetic organelles. Proc Natl Acad Sci U S A 103:17485–17489

    PubMed  CAS  Google Scholar 

  • Proksch RB, Moskowitz BM, Dahlberg ED, Schaeffer T, Bazylinski DA, Frankel RB (1995) Magnetic force microscopy of the submicron magnetic assembly in a magnetotactic bacterium. Appl Phys Lett 66:2582–2584

    CAS  Google Scholar 

  • Prozorov T, Mallapragada SK, Narasimhan B, Wang L, Palo P, Nilsen-Hamilton M, Williams TJ, Bazylinski DA, Prozorov R, Canfield PC (2007) Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv Funct Mater 17:951–957

    CAS  Google Scholar 

  • Reiter WD, Palm P (1990) Identification and characterization of a defective SSV1 genome integrated into a tRNA gene in the archaebacterium Sulfolobus sp. B12. Mol Gen Genet 221:65–71

    PubMed  CAS  Google Scholar 

  • Richter M, Kube M, Bazylinski DA, Lombardot T, Reinhardt R, Glockner FO, Schüler D (2007) Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group specific genes with putative functions in magnetosome biomineralization and magnetotaxis. J Bacteriol 189:4899–4910

    PubMed  CAS  Google Scholar 

  • Rioux J-B, Philippe N, Pereira S, Pignol D, Wu L-F, Ginet N (2010) A second actin-like MamK protein in Magnetospirillum magneticum AMB-1 encoded outside the genomic magnetosome island. PLoS One 5:e9151

    PubMed  Google Scholar 

  • Rodgers FG, Blakemore RP, Blakemore NA, Frankel RB, Bazylinski DA, Maratea D, Rodgers C (1990a) Intercellular structure in a many-celled magnetotactic prokaryote. Arch Microbiol 145:18–22

    Google Scholar 

  • Rodgers FG, Blakemore RP, Blakemore NA, Frankel RB, Bazylinski DA, Maratea D, Rodgers C (1990b) Intercellular junctions, motility and magnetosome structure in a multicellular magnetotactic prokaryote. In: Frankel RB, Blakemore RP (eds) Iron biominerals. Plenum, New York, pp 231–237

    Google Scholar 

  • Sakaguchi T, Burgess JG, Matsunaga T (1993) Magnetite formation by a sulphate-reducing bacterium. Nature 365:47–49

    CAS  Google Scholar 

  • Sakaguchi T, Arakaki A, Matsunaga T (2002) Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int J Syst Evol Microbiol 52:215–221

    PubMed  CAS  Google Scholar 

  • Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko JM, Schüler D (2006) An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440:110–114

    PubMed  CAS  Google Scholar 

  • Scheffel A, Gärdes A, Grünberg K, Wanner G, Schüler D (2008) The major magnetosome proteins MamGFDC are not essential for magnetite biomineralization in Magnetospirillum gryphiswaldense but regulate the size of magnetosome crystals. J Bacteriol 190:377–386

    PubMed  CAS  Google Scholar 

  • Schübbe S, Kube M, Scheffel A, Wawer C, Heyen U, Meyerdierks A, Madkour MH, Mayer F, Reinhardt R, Schüler D (2003) Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J Bacteriol 185:5779–5790

    PubMed  Google Scholar 

  • Schübbe S, Würdemann C, Peplies J, Heyen U, Wawer C, Glöckner FO, Schüler D (2006) Transcriptional organization and regulation of magnetosome operons in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 72:5757–5765

    Google Scholar 

  • Schübbe S, Williams TJ, Xie G, Kiss HE, Brettin TS, Martinez D, Ross CA, Schüler D, Cox BL, Nealson KH, Bazylinski DA (2009) Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 75:4835–4852

    PubMed  Google Scholar 

  • Schüler D (2008) Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev 32:654–672

    PubMed  Google Scholar 

  • Schüler D, Baeuerlein E (1997) Iron transport and magnetite crystal formation of the magnetic bacterium Magnetospirillum gryphiswaldense. J Phys IV 7:647–650

    Google Scholar 

  • Schüler D, Baeuerlein E (1998) Dynamics of iron uptake and Fe3O4 mineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J Bacteriol 180:159–162

    PubMed  Google Scholar 

  • Simmons SL, Edwards KJ (2007) Unexpected diversity in populations of the many-celled magnetotactic prokaryote. Environ Microbiol 9:206–215

    PubMed  CAS  Google Scholar 

  • Simmons SL, Sievert SM, Frankel RB, Bazylinski DA, Edwards KJ (2004) Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond. Appl Environ Microbiol 70:6230–6239

    PubMed  CAS  Google Scholar 

  • Simmons SL, Bazylinski DA, Edwards KJ (2006) South seeking magnetotactic bacteria in the Northern Hemisphere. Science 311:371–374

    PubMed  CAS  Google Scholar 

  • Sode K, Kudo S, Sakaguchi T, Nakamura N, Matsunaga T (1993) Application of bacterial magnetic particles for highly selective messenger-RNA recovery system. Biotechnol Tech 7:688–694

    CAS  Google Scholar 

  • Spring S, Amann R, Ludwig W, Schleifer KH, Vangemerden H, Petersen N (1993) Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a fresh-water sediment. Appl Environ Microbiol 59:2397–2403

    PubMed  CAS  Google Scholar 

  • Spring S, Lins U, Amann R, Schleifer K-H, Ferreira LCS, Esquivel DMS, Farina M (1998) Phylogenetic affiliation and ultrastructure of uncultured magnetic bacteria with unusually large magnetosomes. Arch Microbiol 169:136–147

    PubMed  CAS  Google Scholar 

  • Staniland S, Williams W, Telling N, Van Der Laan G, Harrison A, Ward B (2008) Controlled cobalt doping of magnetosomes in vivo. Nat Nanotechnol 3:158–162

    PubMed  CAS  Google Scholar 

  • Tanaka T, Maruyama K, Yoda K, Nemoto E, Udagawa Y, Nakayama H, Takeyama H, Matsunaga T (2003) Development and evaluation of an automated workstation for single nucleotide polymorphism discrimination using bacterial magnetic particles. Biosens Bioelectron 19:325–330

    PubMed  CAS  Google Scholar 

  • Tanaka M, Okamura Y, Arakaki A, Tanaka T, Takeyama H, Matsunaga T (2006) Origin of magnetosome membrane: proteomic analysis of magnetosome membrane and comparison with cytoplasmic membrane. Proteomics 6:5234–5247

    PubMed  CAS  Google Scholar 

  • Thomas-Keprta KL, Bazylinski DA, Kirschvink JL, Clemett SJ, McKay DS, Wentworth SJ, Vali H, Gibson EK Jr, Romanek CS (2000) Elongated prismatic magnetite (Fe3O4) crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochim Cosmochim Acta 64:4049–4081

    PubMed  CAS  Google Scholar 

  • Thomas-Keprta KL, Clemett SJ, Bazylinski DA, Kirschvink JL, McKay DS, Wentworth SJ, Vali H, Gibson EK Jr, McKay MF, Romanek CS (2001) Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures. Proc Natl Acad Sci USA 98:2164–2169

    PubMed  CAS  Google Scholar 

  • Thomas-Keprta KL, Clemett SJ, Bazylinski DA, Kirschvink JL, McKay DS, Wentworth SJ, Vali H, Gibson EK Jr, McKay MF, Romanek CS (2002) Magnetofossils from ancient Mars: a robust biosignature in the Martian meteorite ALH84001. Appl Environ Microbiol 68:3663–3672

    PubMed  CAS  Google Scholar 

  • Thornhill RH, Burgess JG, Sakaguchi T, Matsunaga T (1994) A morphological classification of bacteria containing bullet-shaped magnetic particles. FEMS Microbiol Lett 115:169–176

    Google Scholar 

  • Towe KM, Moench TT (1981) Electron-optical characterization of bacterial magnetite. Earth Planet Sci Lett 52:213–220

    CAS  Google Scholar 

  • Ullrich S, Kube M, Schübbe M, Reinhardt R, Schüler D (2005) A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J Bacteriol 187:7176–7184

    PubMed  CAS  Google Scholar 

  • Weiss BP, Kim SS, Kirschvink JL, Kopp RE, Sankaran M, Kobayashi A, Komeili A (2004) Magnetic tests magnetosome chains in Martian meteorite ALH84001. Proc Natl Acad Sci USA 101:8281–8284

    PubMed  CAS  Google Scholar 

  • Wenter R, Wanner G, Schüler D, Overmann J (2009) Ultrastructure, tactic behaviour and potential for sulfate reduction of a novel multicellular magnetotactic prokaryote from North Sea sediments. Environ Microbiol 11:1493–1505

    PubMed  Google Scholar 

  • Williams TJ, Zhang CL, Scott JH, Bazylinski DA (2006) Evidence for autotrophy via the reverse tricarboxylic acid cycle in the marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 72:1322–1329

    PubMed  CAS  Google Scholar 

  • Yoshino T, Matsunaga T (2005) Development of efficient expression system for protein display on bacterial magnetic particles. Biochem Biophys Res Commun 338:1678–1681

    PubMed  CAS  Google Scholar 

  • Yoshino T, Matsunaga T (2006) Efficient and stable display of functional proteins on bacterial magnetic particles using Mms13 as a novel anchor molecule. Appl Environ Microbiol 72:465–471

    PubMed  CAS  Google Scholar 

  • Yoshino T, Tanaka T, Takeyama H, Matsunaga T (2003) Single nucleotide polymorphism genotyping of aldehyde dehydrogenase 2 gene using a single bacterial magnetic particle. Biosens Bioelectron 18:661–666

    PubMed  CAS  Google Scholar 

  • Yoza B, Matsumoto M, Matsunaga T (2002) DNA extraction using modified bacterial magnetic particles in the presence of amino silane compound. J Biotechnol 94:217–224

    PubMed  CAS  Google Scholar 

  • Yoza B, Arakaki A, Maruyama K, Takeyama H, Matsunaga T (2003a) Fully automated DNA extraction from blood using magnetic particles modified with a hyperbranched polyamidoamine dendrimer. J Biosci Bioeng 95:21–26

    PubMed  CAS  Google Scholar 

  • Yoza B, Arakaki A, Matsunaga T (2003b) DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer. J Biotechnol 101:219–228

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank R.B. Frankel for continued collaboration and encouragement. D.A.B. and C.T.L. are supported by U.S. National Science Foundation grant EAR-0920718. U.L. and F.A. acknowledge partial financial support from The National Council for Scientific and Technological Development (CNPq) of Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis A. Bazylinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lefèvre, C.T., Abreu, F., Lins, U., Bazylinski, D.A. (2011). A Bacterial Backbone: Magnetosomes in Magnetotactic Bacteria. In: Rai, M., Duran, N. (eds) Metal Nanoparticles in Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18312-6_4

Download citation

Publish with us

Policies and ethics