Skip to main content

Mathematical Modelling of the Immune System

  • Chapter
Modelling in Molecular Biology

Part of the book series: Natural Computing Series ((NCS))

Summary

The immune system is the natural defense of an organism. It comprises a network of cells, molecules, and organs whose primary tasks are to defend the organism from pathogens and maintain its integrity. The cooperation between the components of the immune system network realizes effectively and efficiently the processes of pattern recognition, learning, and memory. Our knowledge of the immune system is still incomplete and mathematical modelling has been shown to help better understanding of its underlying principles and organization. In this chapter we provide a brief introduction to the biology of the immune system and describe several approaches used in mathematical modelling of the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benjamini, E., Coico, R., Sunshine, G.: Immunology: A Short Course (Wiley, New York Singapore Toronto 2000)

    Google Scholar 

  2. Roitt, I., Brostoff, J., Male, D.: Immunology, 6th edn. (Harcourt, Edinburgh London New York Sydney Toronto 2001)

    Google Scholar 

  3. Bellomo, N., Preziosi, L.: Modeling and mathematical problems related to tumor evolution and its interaction with the immune system. Math. Comput. Model. 32, 413–452 (2000)

    Google Scholar 

  4. International Symposium on Computational Cell Biology (2001). http://www.nrcam.uchc.edu/conference/.

  5. Burnet, F.: The Clonal Selection Theory of Acquired Immunity. (Vanderbilt University, Nashville, 1959)

    Google Scholar 

  6. Jerne, N.K.: The immune system. Sci. Am. 229(1), 52–60 (1973)

    Article  Google Scholar 

  7. Jerne, N.K.: Towards a Network Theory of the Immune System. Ann. Immunol. (Inst. Pasteur) 125C, 373–389(1974)

    Google Scholar 

  8. Zorzenon Dos Santos, R.M.: Immune Responses: Getting Close to Experimental Results with Cellular Automata Models. In Stauffer, D. (ed.): Annual Reviews of Computational Physics, Vol.V (World Scientific, Singapore 1999), 159–202

    Chapter  Google Scholar 

  9. Lollini, P.L.: private communication (2002)

    Google Scholar 

  10. Perelson, A.S. (ed.): Theoretical Immunology, Part One & Two, SFI Studies in the Sciences of Complexity (Addison-Wesley, Boston 1988)

    Google Scholar 

  11. Perelson, A.S., Weisbuch, G.: Immunology for physicists. Rev. Mod. Phys. 69, 1219–1267 (1997)

    Article  Google Scholar 

  12. Celada, F., Seiden, P.E.: A computer model of cellular interactions in the immune system. Immunol. Today 13(2), 56–62 (1992)

    Article  Google Scholar 

  13. Perelson, A.S., Oster, G.F.: Theoretical studies on clonal selection: Minimal antibody repertoire size and reliability of self-nonself discrimination. J. Theor. Biol. 81, 645–670 (1979)

    Article  MathSciNet  Google Scholar 

  14. Farmer, J.D., Packard, N., Perelson, A.S.: The immune system, adaptation and machine learning. Physica D 22, 187–204 (1986)

    Article  MathSciNet  Google Scholar 

  15. Behn, U., Leo van Hemmen, J., Sulzer, B.: Memory to Antigenic Challenge of the Immune System: Synergy of Idiotypic Interactions and Memory B-Cells. J. Theor. Biol. 165, 1–25 (1993)

    Article  Google Scholar 

  16. Lippert, K., Behn, U.: Modeling the Immune System: Architecture and dynamics of idiotypic networks. In Stauffer, D. (ed.): Annual Reviews of Computational Physics, Vol.IV (World Scientific, Singapore 1997), 287–311

    Chapter  Google Scholar 

  17. Behn, U., Celada, F., Seiden, P.E.: Computer modeling in immunology. In Lanzavecchia, A., Malissen, B., Sitia, R. (eds.): Frontiers of Life, Vol.II (Academic Press, London 2001), 611–630.

    Google Scholar 

  18. Bellomo, N., Pulvirenti, M. (eds): Modeling in Applied Sciences: A Kinetic Theory Approach (Birkhäuser, Boston 1996)

    Google Scholar 

  19. Bellomo, N., Lo Schiavo, M.: Lecture Notes on the Generalized Boltzmann Equation (World Scientific, London Singapore 2000)

    Google Scholar 

  20. Forrest, S., Hofmeyr, S.A.: Immunology as information processing. In Segel, L.A., Cohen, I. (eds.): SFI Studies in the Sciences of Complexity: Design Principles for the Immune System and Other Distributed Autonomous Systems (Oxford University Press, New York 2001)

    Google Scholar 

  21. Dasgupta, D. (ed.): Artificial Immune Systems and Their Applications (Springer, Berlin Heidelberg New York 1999)

    MATH  Google Scholar 

  22. Parisi, G.: Immunological memory in a network perspective. In Livi, R., Ruffo, S., Ciliberto, S., Buiatti, M. (eds.): Chaos and Complexity (World Scientific, Singapore 1988), 394–401

    Google Scholar 

  23. Parisi, G.: A simple model for the immune network. Proc. Natl. Acad. Sci. USA87, 429–433 (1990)

    Article  Google Scholar 

  24. Smith, R.E., Forrest, S., Perelson, A.S.: Searching for diverse, cooperative populations with genetic algorithms. Evol. Comput. 1(2), 127–149 (1993)

    Article  Google Scholar 

  25. Forrest, S., Javornik, B., Smith, R.E., Perelson, A.S.: Using genetic algorithms to explore pattern recognition in the immune system. Evol. Comput. 1(3), 191–211 (1993)

    Article  Google Scholar 

  26. Kaufman, M., Urbain, J., Thomas, R.: Towards a logical analysis of the immune response. J. Theor. Biol. 114, 527 (1985)

    Article  MathSciNet  Google Scholar 

  27. Weisbuch, G., Atlan, H.: Control of the Immune Response. J. Phys. A 21, 189–192 (1988)

    Article  Google Scholar 

  28. Stauffer, D.: In Pires, A., Landau, D.P., Herrmann, H.J. (eds.): Computational Physics and Cellular Automata (World Scientific, Singapore, 1989)

    Google Scholar 

  29. Cohen I.R., Atlan, H.: Network regulation of autoimmunity: an automation model. J. Autoimmun. 2(5), 613–625 (1989)

    Article  Google Scholar 

  30. Pandey, R., Stauffer, D.: Metastability with probabilistic cellular automata in an HIV infection. J. Stat. Phys. 61, 235 (1990)

    Article  Google Scholar 

  31. Neumann, A.U.: Control of the immune response by a threshold automata model on a lattice. Physica A 162, 1–19 (1989)

    Article  MathSciNet  Google Scholar 

  32. Dayan, I., Havlin, S., Stauffer, D.: Cellular automata generalization of the Weisbuch-Atlan model for immune response. J. Phys. A 21(3), 2473–2476 (1988)

    Article  MATH  Google Scholar 

  33. Atlan, H., Cohen, I.R. (eds.): Theories of Immune Networks (Springer, Berlin Heidelberg New York 1989)

    Google Scholar 

  34. Stewart, J., Varela, F.J.: Morphogenesis in shape-space. Elementary metadynamics in a model of the immune network. J. Theor. Biol. 153, 477–498 (1991)

    Article  Google Scholar 

  35. De Boer, R.J., Segel, L.A., Perelson, A.S.: Pattern formation in one-and twodimensional shape-space models of the immune system. J. Theor. Biol. 155(3), 295–333 (1992)

    Article  Google Scholar 

  36. Segel, L.A., Perelson, A.S.: A paradoxical instability caused by relatively short range inhibition. J. Appl. Math. 50, 91–107 (1990)

    MathSciNet  MATH  Google Scholar 

  37. Weisbuch, G., De Boer, R.J., Perelson, A.S.: Localized memories in idiotypic networks. J. Theor. Biol. 146(4), 483–99 (1990)

    Article  Google Scholar 

  38. Stauffer, D., Weisbuch, G.: High dimensional simulation of shape space model for immune system. Physica A 180, 42–52 (1992)

    Article  Google Scholar 

  39. Stauffer, D.: Monte-Carlo simulation of Ising-like immunological shape space. Int. J. Mod. Phys. C 5(3), 513–518 (1994)

    Article  MathSciNet  Google Scholar 

  40. Dasgupta, S.: Monte Carlo simulation of the shape space model of immunology. Physica A 189, 403–419 (1992)

    Article  Google Scholar 

  41. Bernardes, A.T., Zorzenon dos Santos, R.M.: Immune network at the edge of chaos. J. Theor. Biol. 186(2), 173–187 (1997)

    Article  Google Scholar 

  42. Zorzenon dos Santos, R.M., Bernardes, A.T.: Immunization and Aging: A Learning Process in the Immune Network. Phys. Rev. Lett. 81, 3034–3037 (1998)

    Article  Google Scholar 

  43. Pandey, R., Stauffer, D.: Immune response via interacting three dimensional network of cellular automata. J. de Physique 50, 1 (1989)

    Article  Google Scholar 

  44. Chowdhury, D., Stauffer, D., Choudary, P.V.: A unified discrete model of immune response. J. Theor. Biol. 145(2), 207–215 (1990)

    Article  Google Scholar 

  45. Chowdhury, D.: Immune Network: An Example of Complex Adaptive Systems. In Dasgupta, D. (ed.): Artificial Immune Systems and Their Applications (Springer, Berlin Heidelberg New York 1999)

    Google Scholar 

  46. Chowdhury, D., Stauffer, D.: Statistical Physics of Immune Networks. Physica A 186, 61–81 (1992)

    Article  Google Scholar 

  47. Zorzenon dos Santos, R.M., Coutinho, S.C.: The dynamics of the HIV infection: a cellular automata approach. Phys. Rev. Lett. 87, 168102–168114 (2001)

    Article  Google Scholar 

  48. Bernaschi, M., Castiglione, F.: Selection of escape mutants from immune recognition during HIV infection. Immunol. Cell Biol. 80, 307–313 (2002)

    Article  Google Scholar 

  49. Seiden, P.E., Celada, F.: A model for simulating cognate recognition and response in the immune system. J. Theor. Biol. 158, 329–357 (1992)

    Article  Google Scholar 

  50. Castiglione, F., Bernaschi, M., Succi, S.: Simulating the immune response on a distributed parallel computer. Int. J. Mod. Phys. C 8, 527–545 (1997)

    Article  Google Scholar 

  51. Castiglione, F., Mannella, G., Motta, S., Nicosia, G.: A network of cellular automata for the simulation of the immune system. Int. J. Mod. Phys. C 10, 677–686 (1999)

    Article  Google Scholar 

  52. Motta, S., Nicosia, G.: A plain cellular automata for the simulation of the immune system. In Heemink, A.W., Dekker, L., Arons, H.d.S., Smit, I., v. Stijn, T.L. (eds.): EUROSIM 2001: Shaping Future with Simulation, TU Delft, The Netherlands, 2001

    Google Scholar 

  53. Morpurgo, D., Serenthá, R., Seiden, P.E., Celada, F.: Modeling thymic functions in a cellular automaton. Int. Immunol. 7, 505–516 (1995)

    Article  Google Scholar 

  54. Celada, F., Seiden, P.E.: Affinity maturation and hypermutation in a simulation of the humoral immune response. Eur. J. Immunol. 26(6), 1350–1358 (1996)

    Article  Google Scholar 

  55. Kohler, B., Puzone, R., Seiden, P.E., Celada, F.: A systematic approach to vaccine complexity using an automaton model of the cellular and humoral immune system. Vaccine 19, 862–876 (1999)

    Article  Google Scholar 

  56. Castiglione, F., Motta, F., Nicosia, G.: Pattern Recognition by Primary and Secondary Response of an Artificial Immune System. Theory Biosci. 120(2), 93–106 (2001)

    Google Scholar 

  57. Castiglione, F., Motta, S., Nicosia, G., Zammataro, L.: The effects of an apoptosis mechanism on the immune response. In Heemink, A.W., Dekker, L., Arons, H.d.S., Smit, I., v. Stijn, T.L. (eds.): EUROSIM 2001: Shaping Future with Simulation, TU Delft, The Netherlands, 2001

    Google Scholar 

  58. Jamin, C., Le Corre, R., Lydyard, P.M., Youinou, P.: Anti-CD5 extends the proliferative response of humane CD5+ B cells activated with anti-IgM and interleukine-2. Eur. J. Immunol. 26, 57–62 (1996)

    Article  Google Scholar 

  59. Castiglione, F., Agur, Z.: The Effect of Dose and Inter-Dosing Interval on the Patient’s Hypersensitivity to the Drug: Analyzing a Cellular Automata Model of the Immune System. In Preziosi, L. (ed.): Cancer Modeling and Simulation (Chapman & Hall/CRC Press 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Motta, S., Brusic, V. (2004). Mathematical Modelling of the Immune System. In: Ciobanu, G., Rozenberg, G. (eds) Modelling in Molecular Biology. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18734-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18734-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62269-4

  • Online ISBN: 978-3-642-18734-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics