Skip to main content

Modeling of Face Milling

  • Reference work entry
  • First Online:
  • 289 Accesses

Synonyms

Modeling of face milling operations; Modeling of face milling processes

Definition

Face milling is the machining process with highest productivity to effectively machine large surfaces of metallic components. Thus it is of utmost interest to optimize this widely applied process.

One important possibility to examine, analyze, and improve machining processes is the modeling and simulation. Using this technique the performance of cutting processes and characteristics of manufactured components can be predicted and planned in order to optimize productivity, quality, and cost (Tapoglou and Antoniadis 2012; van Luttervelt et al. 1998).

Modeling of face milling includes all modeling approaches dealing with the cutting process face milling. There are models describing the kinematics of the process itself; but in most cases one of the listed targets is being examined:

  • Force system/cutting forces

  • Cutting temperatures

  • Workpiece temperatures

  • Chip geometry and chipping volume

  • Surface...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adolfsson C, Ståhl J-E (1995) Cutting force model for multi-toothed cutting processes and force measuring equipment for face milling. Int J Mach Tool Manuf 35(12):1715–1728

    Google Scholar 

  • Altintas Y, Budak E (1995) Analytical prediction of stability lobes in milling. Ann CIRP 44(1):357–362

    Google Scholar 

  • Altintas Y, Engin S (2001) Generalized modeling of mechanics and dynamics of milling cutters. CIRP Ann Manuf Technol 50(1):25–30

    Google Scholar 

  • Altintas Y, Jin X (2011) Mechanics of micro-milling with round edge tools. CIRP Ann Manuf Technol 60(1):77–80

    Google Scholar 

  • Altintas Y, Merdol SD (2007) Virtual high performance milling. CIRP Ann Manuf Technol 56(1):81–84

    Google Scholar 

  • Armarego EJA, Wang J, Deshpande NP (1995) Computer-aided predictive cutting model for forces in face milling allowing for tooth run-out. Ann CIRP 44(1):43–48

    Google Scholar 

  • Aykut S, Gölcü M, Semiz S, Ergür HS (2007) Modeling of cutting forces as function of cutting parameters for face milling of satellite 6 using an artificial neural network. J Mater Process Technol 190:199–203

    Google Scholar 

  • Bajic D, Celent L, Jozic S (2012) Modeling of the influence of cutting parameters on the surface roughness, tool wear and cutting force in face milling in off-line process control. J Mech Eng 58(11):673–682

    Google Scholar 

  • Baro PK, Joshi SS, Kapoor SG (2005) Modeling of cutting forces in a face-milling operation with self-propelled round insert milling cutter. Int J Mach Tools Manuf 45:831–839

    Google Scholar 

  • Bayoumi AE, Yücesan G, Hutton DV (1994a) On the closed form mechanistic modeling of milling: specific cutting energy, torque, and power. J Mater Eng Perform 3:151–158

    Google Scholar 

  • Bayoumi AE, Yucesan G, Kendall LA (1994b) An analytic mechanistic cutting force model for milling operations: a theory and methodology. Trans ASME – J Eng Ind 116(3):324–330

    Google Scholar 

  • Becke C (2011) Prozesskraftrichtungsangepasste Frässtrategien zur schädigungsarmen Bohrungsbearbeitung an faserverstärkten Kunststoffen [Milling strategies with regard to process force directions for low-damage drilling processes of fiber-reinforced plastics], PhD thesis, Karlsruhe Institute of Technology

    Google Scholar 

  • Benardos PG, Vosniakos GC (2002) Prediction of surface roughness in CNC face milling using neural networks and Taguchi’s design of experiments. Robot Comput Integr Manuf 18:343–354

    Google Scholar 

  • Bhattacharyyaa P, Senguptaa D, Mukhopadhyayb S (2007) Cutting force-based real-time estimation of tool wear in face milling using a combination of signal processing techniques. Mech Syst Signal Process 21:2665–2683

    Google Scholar 

  • Budak E, Ozturk E, Tunc LT (2009) Modeling and simulation of 5-axis milling processes. CIRP Ann Manuf Technol 58(1):347–350

    Google Scholar 

  • Chang C-S (2005) Prediction of cutting forces in milling stainless steels using chamfered main cutting edge tool. J Mech 21(3):145–155

    MathSciNet  Google Scholar 

  • Fleischer J, Pabst R, Kelemen S (2007) Heat flow simulation for dry machining of power train castings. Ann CIRP 56(1):117–122

    Google Scholar 

  • Franco P (2008) Effect of cutter axis tilt and average feed deviations on surface roughness of milled parts, International Multi-Conference on Engineering and Technological Innovation: IMETI, Orlando, Florida

    Google Scholar 

  • Fu HJ, Devor RE, Kapoor SG (1984) A mechanistic model for the prediction of the force system in face milling operations. J Eng Ind 1(2):81–88

    Google Scholar 

  • Gu F, Kapoor SG, Devor RE, Bandyopadhyay P (1997) An enhanced cutting force model for face milling with variable cutter feed motion and complex workpiece geometry. J Manuf Sci Eng 119(4):467–475

    Google Scholar 

  • Guzeev VI, Pimenov DY (2011) Cutting force in face milling with tool wear. Russ Eng Res 31(10):989–993

    Google Scholar 

  • Hwang JH, Oh YT, Kwon WT (2003) In-process estimation of radial immersion ratio in face milling using cutting force. Int J Adv Manuf Technol 22:313–320

    Google Scholar 

  • Kim HS, Ehmann KF (1993) A cutting force model for face milling operations. Int J Mach Tools Manuf 33(5):651–673

    Google Scholar 

  • Kim T-Y, Woo J, Shin D, Kim J (1999) Indirect cutting force measurement in multi-axis simultaneous NC milling processes. Int J Mach Tools Manuf 39:1717–1731

    Google Scholar 

  • Kuljanic E, Sortino E (2005) TWEM, a method based on cutting forces – monitoring tool wear in face milling. Int J Mach Tools Manuf 45:29–34

    Google Scholar 

  • Ng E-G, Szablewski D, Dumitrescu M, Elbestawi MA, Sokolowski JH (2004) High speed face milling of an aluminium silicon alloy casting. CIRP Ann Manuf Technol 53(1):69–72

    Google Scholar 

  • Oxley PLB (1989) Mechanics of machining: an analytical approach to assessing machinability. Ellis Horwood, Chichester

    Google Scholar 

  • Pabst R (2008) Mathematische Modellierung der Wärmestromdichte zur Simulation des thermischen Bauteilverhaltens bei der Trockenbearbeitung, [Mathematical modeling of the surface heat flux to simulate the thermal behavior of workpieces in dry machining], PhD thesis, University Karlsruhe (TH)

    Google Scholar 

  • Pabst R, Fleischer J, Michna J (2010) Modelling of the heat input for face-milling processes. Ann CIRP 59(1):121–124

    Google Scholar 

  • Pandey C, Shan HS (1972) Analysis of cutting forces in peripheral and face milling operations. Int J Prod Res 10(4):370–391

    Google Scholar 

  • Patel KM, Joshi SS (2005) Mechanics of machining of face-milling operation performed using a self-propelled round insert milling cutter. J Mater Process Technol 171:68–76

    Google Scholar 

  • Pitallà GM, Monno M (2010) 3D finite element modeling of face milling of continuous chip material. Int J Adv Manuf Technol 47:543–555

    Google Scholar 

  • Rüeg A, Gygax P (1992) A generalized kinematics model for three- to five-axis milling machines and their implementation in a CNC. CIRP Ann Manuf Technol 41(1):547–550

    Google Scholar 

  • Ruzhong Z, Wang KK (1983) Modelling of cutting force pulsation in face-milling. Ann ClRP 32(1):21–26

    Google Scholar 

  • Sadeghinia H, Razfar MR, Takabi J (2007) 2D finite element modeling of face milling with damage effects, In: 3rd WSEAS international conference on applied and theoretical mechanics, Spain, pp 145–150

    Google Scholar 

  • Saglam H (2011) Tool wear monitoring in bandsawing using neural networks and Taguchi’s design of experiments. Int J Adv Manuf Technol 55:969–982

    Google Scholar 

  • Schulze V, Becke C (2011) Analysis of machining strategies for fiber reinforced plastics with regard to process force direction. Proc Eng 19:312–317

    Google Scholar 

  • Schulze V, Pabst R, Michna J (2008) Modeling the heat flux as an input parameter to simulate cutting processes. In: Proceeding of the 11th CIRP conference on modeling of machining operations, pp 155–162

    Google Scholar 

  • Schulze V, Pabst R, Michna J (2009a) Modeling of the heat input for the face-milling of EN-GJL-250. In: Proceedings of the 12th CIRP conference on modelling of machining operations, pp. 243–248

    Google Scholar 

  • Schulze V, Michna J, Pabst R, Hauer Th (2009b) Thermische Belastung beim Stirnplanfräsen [Investigation on the thermal load during end-face milling], In: wt Werkstattstechnik online, Jahrgang 99, Heft 4, Springer-VDI-Verlag GmbH & Co.KG, pp 281–286

    Google Scholar 

  • Schulze V, Michna J, Pabst R, Hauer T (2009c) Simulation des Wärmeeintrags verbessert Toleranztreue bei der Trockenbearbeitung [Simulation of the heat input for improved tolerance accuracies in dry machining], In: MM Maschinenmarkt, Ausgabe 13, pp 26–28

    Google Scholar 

  • Schulze V, Spomer W, Becke C (2012) A voxel-based kinematic simulation model for force analyses of complex milling operations such as wobble milling. Prod Eng 6(1):1–9

    Google Scholar 

  • Surmann T, Biermann D (2008) The effect of tool vibrations on the flank surface created by peripheral milling. CIRP Ann Manuf Technol 57(1):375–378

    Google Scholar 

  • Surmann T, Enk D (2007) Simulation of milling tool vibration trajectories along changing engagement conditions. Int J Mach Tool Manuf 47(9):1442–1448

    Google Scholar 

  • Surmann T, Krebs E (2012) Optimization of micromilling by adjustment of inclination angles. Procedia CIRP 2:87–91

    Google Scholar 

  • Tapoglou N, Antoniadis A (2012) 3-Dimensional kinematics simulation of face milling. Measurement 45:1396–1405

    Google Scholar 

  • van Luttervelt CA, Childs THC, Jawahir IS, Klocke F, Venuvinod PK, Altintas Y, Armarego E, Dornfeld D, Grabec I, Leopold J, Lindstrom B, Lucca D, Obikawa T, Shirakashi, Sato H (1998) Present situation and future trends in modelling of machining operations progress report of the CIRP Working Group ‘modelling of machining operations’. CIRP Ann Manuf Technol 47(2):587–626

    Google Scholar 

  • Young H-T, Mathew P, Oxley PLB (1993) Predicting cutting forces in face milling. Int J Mach Tools Manuf 34(6):771–783

    Google Scholar 

  • Zheng HQ, Li XP, Wong YS, Nee AYC (1999) Theoretical modelling and simulation of cutting forces in face milling with cutter runout. Int J Mach Tools Manuf 39:2003–2018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Schulze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 CIRP

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schulze, V. (2014). Modeling of Face Milling. In: Laperrière, L., Reinhart, G. (eds) CIRP Encyclopedia of Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20617-7_16676

Download citation

Publish with us

Policies and ethics